Log in

Densification mechanism involved during spark plasma sintering of a codoped α-alumina material: Part I. Formal sintering analysis

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Spark plasma sintering (SPS) of a codoped α-alumina powder has been investigated at temperatures between 850 and 1200 °C. The “grain size versus relative density” trajectory showed a significant grain growth as soon as the residual porosity closed. The densification mechanism was determined by anisothermal (investigation of the heating part of a SPS run) and isothermal methods. It was proposed that grain-boundary sliding, accommodated by oxygen grain-boundary diffusion, governed densification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. J.R. Groza, J.D. Curtis, M. Krämer: Field-assisted sintering of nanocrystalline titanium nitride. J. Am. Ceram. Soc. 83, 1281 2000

    Article  CAS  Google Scholar 

  2. Z. Shen, M. Johnsson, Z. Zhao, M. Nygren: Spark plasma sintering of alumina. J. Am. Ceram. Soc. 85, 1921 2002

    Article  CAS  Google Scholar 

  3. B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida: Spark plasma sintering of transparent alumina. Scr. Mater. 57, 607 2007

    Article  CAS  Google Scholar 

  4. M. Suganuma, Y. Kitagawa, S. Wada, N. Murayama: Pulsed electric current sintering of silicon nitride. J. Am. Ceram. Soc. 86, 387 2003

    Article  CAS  Google Scholar 

  5. G. Bernard-Granger, C. Guizard: Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification. Acta Mater. 55, 3493 2007

    Article  CAS  Google Scholar 

  6. Y. Bangchao, J. Jiawen, Z. Yican: Spark-plasma sintering the 8-mol% yttria-stabilized zirconia electrolyte. J. Mater. Sci. Lett. 39, 6863 2004

    Google Scholar 

  7. T. Yamamoto, H. Kitaura, Y. Kodera, T. Ishii, M. Ohyanagi, Z.A. Munir: Consolidation of nanostructured β-SiC by spark plasma sintering. J. Am. Ceram. Soc. 87, 1436 2004

    Article  CAS  Google Scholar 

  8. N. Frage, S. Cohen, S. Meir, S. Kalabukhov, M.P. Dariel: Spark plasma sintering (SPS) of transparent magnesium–aluminate spinel. J. Mater. Sci. 42, 3273 2007

    Article  CAS  Google Scholar 

  9. K. Morita, B-N. Kim, K. Hiraga, H. Yoshida: Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering processing. Scr. Mater. 58, 1114 2008

    Article  CAS  Google Scholar 

  10. R. Chaim, R. Marder-Jaeckel, J.Z. Shen: Transparent YAG ceramics by surface softening of nanoparticles in spark plasma sintering. Mater. Sci. Eng., A 429, 74 2006

    Article  Google Scholar 

  11. R. Chaim, M. Margulis: Densification maps for spark plasma sintering of nanocrystalline MgO ceramics. Mater. Sci. Eng., A 407, 180 2005

    Article  Google Scholar 

  12. M. Tokita: Mechanism of spark plasma sintering and its application to ceramics. Nyu Seramikkusu 10, 43 1997

    CAS  Google Scholar 

  13. V. Mamedov: Spark plasma sintering as advanced PM sintering method. Powder Metall. 45, 322 2002

    Article  CAS  Google Scholar 

  14. J.S. Reed: Principles of Ceramic Processing 2nd ed. John Wiley & Sons Inc. New York 1995 p. 438.

    Google Scholar 

  15. G. Bernard-Granger, C. Guizard, A. Addad: Sintering of an ultra pure α-alumina powder: I. Densification, grain growth and sintering path. J. Mater. Sci. 42, 6316 2007

    Article  CAS  Google Scholar 

  16. G. Bernard-Granger, C. Guizard: Apparent activation energy for the densification of a commercially available granulated zirconia powder. J. Am. Ceram. Soc. 90, 1246 2007

    Article  CAS  Google Scholar 

  17. G. Bernard-Granger, L. San-Miguel, C. Guizard: Sintering behavior and optical properties of yttria. J. Am. Ceram. Soc. 90, 2698 2007

    Article  CAS  Google Scholar 

  18. R.J. Brook, E. Gilbert, D. Hind, J.M. Vieira: Sintering—Theory and Practice edited by D. Kolar, S. Pejovnik, and M.M. Ristic Elsevier Amsterdam 1982 p. 585

  19. R.L. Coble: Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J. Appl. Phys. 41, 4798 1970

    Article  Google Scholar 

  20. D. McLean, K.F. Halle: Structural Processes in Creep Spec. Rep. No. 70 The Iron and Steel Institute London 1961 19

    Google Scholar 

  21. A.K. Mukherjee, J.E. Bird, J.E. Dorn: Experimental correlations for high-temperature creep. Trans ASM 62, 155 1969

    CAS  Google Scholar 

  22. C. Herring: Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437 1950

    Article  Google Scholar 

  23. G. Bernard-Granger, C. Guizard: Sintering of an ultra pure α-alumina powder: II. Mechanical, thermo-mechanical, optical properties and missile dome design. J. Mater. Sci. 2008 (submitted)

    Google Scholar 

  24. M.F. Ashby, R.A. Verrall: Diffusion accommodated flow and superplasticity. Acta Metall. 21, 149 1973

    Article  CAS  Google Scholar 

  25. B. Burton: The relationship between dislocation recovery creep and vacancy diffusion creep. Philos. Mag. A 48, L9 1983

    Article  CAS  Google Scholar 

  26. J. Weertman: Dislocation climb theory of steady-state creep. Trans. ASM 61, 681 1968

    CAS  Google Scholar 

  27. J. Weertman: High temperature creep produced by dislocation motion. John E. Dorn Memorial Symposium Cleveland, OH 1972

  28. K. Messaoudi, A.M. Huntz, B. Lesage: Diffusion and growth mechanisms in Al2O3 scales on kinetic Fe–Cr–Al alloys. Mater. Sci. Eng., A 247, 248 1998

    Article  Google Scholar 

  29. D. Clemens, K. Bongartz, W.J. Quaddakers, H. Nickel, H. Holzbrecher, J.S. Brecker: Determination of lattice and grain-boundary diffusion coefficients in protective alumina scales on high temperature alloys using SEM, TEM and SIMS. Fresenius J. Anal. Chem. 353, 267 1995

    Article  CAS  Google Scholar 

  30. A.H. Heuer: Oxygen and aluminium diffusion in α-Al2O3. How much do we really understand? J. Eur. Ceram. Soc. 28, 1495 2008

    Article  CAS  Google Scholar 

  31. D. Prot, M. Le Gall, B. Lesage, A.M. Huntz, C. Monty: Self-diffusion in α-Al2O3. IV. Oxygen grain-boundary self-diffusion in undoped and yttria-doped alumina polycrystals. Philos. Mag. A 73, 935 1996

    Article  Google Scholar 

  32. T. Nakagawa, I. Sakaguchi, N. Shibata, K. Matsunaga, T. Mizoguchi, T. Yamamoto: Yttrium do** effect on oxygen grain-boundary diffusion in Al2O3. Acta Mater. 55, 6627 2007

    Article  CAS  Google Scholar 

  33. P.C. Panda, R. Raj, P.E.D. Morgan: Superplastic deformation in fine-grained MgO.2Al2O3 spinel. J. Am. Ceram. Soc. 68, 522 1985

    Article  CAS  Google Scholar 

  34. K. Morita, K. Hiraga, B-N. Kim, T.S. Suzuki, Y. Sakka: Strain softening and hardening during superplastic-like flow in a fine-grained MgAl2O4 spinel polycrystal. J. Am. Ceram. Soc. 87, 1102 2004

    Article  CAS  Google Scholar 

  35. G. Bernard-Granger, N. Benameur, A. Addad, M. Nygren, C. Guizard, S. Deville: Spark plasma sintering of MgAl2O4. J. Am. Ceram. Soc. 2008 (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bernard-Granger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard-Granger, G., Guizard, C. Densification mechanism involved during spark plasma sintering of a codoped α-alumina material: Part I. Formal sintering analysis. Journal of Materials Research 24, 179–186 (2009). https://doi.org/10.1557/JMR.2009.0025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2009.0025

Navigation