Log in

Ductility of cold-rolled and recrystallized Ni3Al foils

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The room-temperature ductility of 95% cold-rolled and recrystallized Ni3Al (Ni–24.0 at.% Al) foils was examined as a function of heat-treatment conditions. The cold-rolled, diffused Goss texture changed to a complicated, transitional texture in the early stage of grain growth and then returned to a similar diffused Goss texture in the late stage. With the texture evolution, the total area fraction of the tough grain boundaries (GBs) such as Σ1, Σ3, and Σ9 increased from 0.23–0.38 in the early stage to 0.56–0.73 in the late stage. Tensile and bending tests revealed that the ductility was drastically improved with the grain growth. The foils in the early stage fractured without showing yielding. In contrast, the foils in the late stage were very ductile, and the tensile elongation increased to 10% with the grain growth. It was confirmed that there was no in-plane anisotropy in ductility. The ductility improvement with the grain growth was ascribed to the increase in the area fraction of the tough GBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Demura, Y. Suga, O. Umezawa, K. Kishida, E.P. George, and T. Hirano: Fabrication of Ni3Al thin foil by cold-rolling. Intermetallics 9, 157 (2001).

    Article  CAS  Google Scholar 

  2. M. Demura, U. Suga, O. Umezawa, and T. Hirano: Roomtemperature mechanical properties of cold-rolled thin foils of binary, stoichiometric Ni3Al. Metall. Mater. Trans A 33, 2607 (2002).

    Article  Google Scholar 

  3. M. Demura, K. Kishida, Y. Suga, M. Takanashi, and T. Hirano: Fabrication of thin Ni3Al foils by cold rolling. Scripta Mater. 47, 267 (2002).

    Article  CAS  Google Scholar 

  4. K. Kishida, M. Demura, Y. Suga, and T. Hirano: Orientation dependence of texture evolution in cold-rolled Ni3Al single crystals. Philos. Mag. 83, 3029 (2003).

    Article  CAS  Google Scholar 

  5. T. Hirano, M. Demura, K. Kishida, S. Kobayashi, and Y. Suga: Mechanical properties of cold-rolled Ni3Al thin foils. Mater. Sci. Forum 426–432, 1727 (2003).

    Article  Google Scholar 

  6. S. Kobayashi, M. Demura, K. Kishida, and T. Hirano: Bending ductility of heavily cold-rolled Ni3Al thin foils, in Defect Properties and Related Phenomena in Intermetallic Alloys, edited by E.P. George, H. Inui, M.J. Mills and G. Eggeler. (Mater. Res. Soc. Symp. Proc. 753, Warrendale, PA, 2003) BB5.20.1. p. 303.

    CAS  Google Scholar 

  7. T. Hirano, M. Demura, K. Kishida, H.U. Hong, and Y. Suga: Mechanical properties of cold-rolled thin foils of Ni3Al, in Structural Intermetallics 2001, edited by K.J. Hemker, D.M. Dimiduk, H. Clemens, R. Darolva, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, and J.D. Whittenberger (The Minerals, Metals, and Materials Society, Warrendale, PA, 2001), p. 765.

    Google Scholar 

  8. S. Kobayashi, M. Demura, K. Kishida, and T. Hirano: Bending and tensile deformation in Ni3Al heavily cold-rolled foil. Intermetallics 13(6), 608 (2005).

    Article  CAS  Google Scholar 

  9. D.G. Brandon: The structure of high-angle grain boundaries. Acta Metall. 14, 1479 (1966).

    Article  CAS  Google Scholar 

  10. J.Q. Su, M. Demura, and T. Hirano: Grain-boundary fracture strength in Ni3Al bicrystals. Philos. Mag. A 82, 1541 (2002).

    CAS  Google Scholar 

  11. M. Demura, K. Kishida, Y. Xu, and T. Hirano: Texture development of Ni3Al thin foils during recrystallization and grain growth. Mater. Sci. Forum 467–470, 447 (2004).

    Article  Google Scholar 

  12. E.M. Schulson, T.P. Weihs, D.V. Viens, and I. Baker: The effect of grain-size on the yield strength of Ni3Al. Acta Metall. 33, 1587 (1985).

    Article  CAS  Google Scholar 

  13. M. Takeyama and C.T. Liu: Effect of grain-size on yield strength of Ni3Al and other alloys. J. Mater. Res. 3, 665 (1988).

    Article  CAS  Google Scholar 

  14. E.P. George, C.T. Liu, and D.P. Pope: Intrinsic ductility and environment embrittlement of binary Ni3Al. Scripta Metall. Mater. 28, 857 (1993).

    Article  CAS  Google Scholar 

  15. S. Hanada, S. Watanabe, and O. Izumi: Deformation behavior of recrystallized Ni3Al. J. Mater. Sci. 24, 203 (1986).

    Article  Google Scholar 

  16. C.T. Liu: Environmental embrittlement and grain-boundary fracture in Ni3Al. Scripta Metall. Mater. 27, 25 (1992).

    Article  Google Scholar 

  17. T. Watanabe: An approach to grain-boundary design for strong and ductile polycrystals. Res. Mechanica 11(1), 47 (1984).

    CAS  Google Scholar 

  18. T. Watanabe, T. Hirano, T. Ochiai, and H. Oikawa: Texture and grain boundary character distribution (GBCD) in B-free ductile polycrystalline Ni3Al. Mater. Sci. Forum 157–162, 1103 (1994).

    Article  Google Scholar 

  19. C. Escher, S. Neves, and G. Gottstein: Recrystallization texture evolution in Ni3Al. Acta Mater. 46, 441 (1998).

    Article  CAS  Google Scholar 

  20. S.G. Chowdhury, R.K. Ray, and A.K. Jena: Texture evolution during recrystallization in a boron-doped Ni76Al24 alloy. Mater. Sci. Eng. A277, 1 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanyong Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, C., Demura, M., Kishida, K. et al. Ductility of cold-rolled and recrystallized Ni3Al foils. Journal of Materials Research 20, 1054–1062 (2005). https://doi.org/10.1557/JMR.2005.0142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0142

Navigation