Log in

Kinetic analysis of solid-state processes

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A simple method for kinetic analysis of solid-state processes has been developed. A criteria capable of classifying different processes is explored here with a view toward visualizing the complexity of solid-state kinetics. They provide a useful tool for the determination of the most suitable kinetic model. The method has been applied to the analysis of crystallization processes in amorphous ZrO2 and RuO2. It is found that the crystallization kinetics of as-prepared sample exhibits a complex behavior under nonisothermal conditions. This is probably due to an overlap** of the nucleation- and crystal-growth processes at the beginning of crystallization. As a consequence, the Johnson-Mehl-Avrami nucleation-growth model cannot be applied. A two-parameter autocatalytic model provides a good description of the crystallization process under isothermal and nonisothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Cahn, Acta Metall. 4, 449 (1956).

    Article  CAS  Google Scholar 

  2. K.A. Jackson, D.R. Uhlmann, and J.D. Hunt, J. Cryst. Growth 1, 1 (1967).

    Article  CAS  Google Scholar 

  3. J.D. Gunton, M. Droz, Introduction to the Theory of Metastable and Unstable States (Springer-Verlag, Berlin, 1983).

    Book  Google Scholar 

  4. K. Sekimoto, Physica 135A, 328 (1986).

    Article  CAS  Google Scholar 

  5. K.R. Coffey, L.A. Clevenger, K. Barmak, A.A. Rudman, and C.V. Thompson, Appl. Phys. Lett. 55, 852 (1989).

    Article  CAS  Google Scholar 

  6. J. Šesták, Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis (Elsevier, Amsterdam, 1984).

    Google Scholar 

  7. M.E. Brown, D. Dollimore, and A.K. Galwey, Comprehensive Chemical Kinetics (Elsevier, Amsterdam, 1980), Vol. 22.

    Google Scholar 

  8. J. Šesták, J. Therm. Anal. 16, 503 (1979).

    Article  Google Scholar 

  9. M.E. Brown, J. Therm. Anal. 49, 17 (1997).

    Article  CAS  Google Scholar 

  10. M. Maciejewski, J. Therm. Anal. 38, 51 (1992).

    Article  CAS  Google Scholar 

  11. J. Šesták, J. Therm. Anal. 36, 1997 (1990).

    Article  Google Scholar 

  12. R. Schöllhorn, Angew. Chem. Int. Ed. Engl. 35, 2338 (1996).

    Article  Google Scholar 

  13. J.B. Holt, J.B. Cutler, and M.E. Wadsworth, J. Am. Ceram. Soc. 45, 133 (1962).

    Article  CAS  Google Scholar 

  14. W. Jander, Z. Anorg. Allg. Chem. 163, 1 (1927).

    Article  CAS  Google Scholar 

  15. A.M. Ginstling and B.I. Broushtein, Zh. Prikl. Khim. 23, 1327 (1950).

    CAS  Google Scholar 

  16. D.A. Young, Decomposition of Solids (Pergamon Press, Oxford, 1966).

    Google Scholar 

  17. W.A. Johnson and R.F. Mehl, Trans. Am. Inst. Miner. Eng. 135, 419 (1939).

    Google Scholar 

  18. M. Avrami, J. Phys. Chem. 8, 212 (1940).

    Article  CAS  Google Scholar 

  19. A.N. Kolmogorov, Izvestia Akad. Nauk USSR, Ser Math. 1, 355 (1937).

    Google Scholar 

  20. B.V. Erofeev, Dokl. Acad. Sci. USSR 52, 511 (1946).

    CAS  Google Scholar 

  21. J.W. Christian, The Theory of Transformations in Metals and Alloys, 2nd ed., (Pergamon Press, New York, 1975), p. 525.

    Google Scholar 

  22. E.G. Prout and F.C. Tompkins, Trans. Faraday. Soc. 40, 488 (1944).

    Article  CAS  Google Scholar 

  23. M.E. Brown, Thermochim. Acta 300, 93 (1977).

    Article  Google Scholar 

  24. W.L. Ng, Aust. J. Chem. 28, 1169 (1975).

    Article  CAS  Google Scholar 

  25. J. Šesták and G. Berggren, Thermochim. Acta 3, 1 (1971).

    Article  Google Scholar 

  26. R. Serra, J. Sempere, and R. Nomen, Thermochim. Acta 316, 37 (1998).

    Article  CAS  Google Scholar 

  27. R. Serra, J. Sempere, and R. Nomen, J. Therm. Anal. 52, 933 (1998).

    Article  CAS  Google Scholar 

  28. H.L. Friedman, J. Polym. Sci. C6, 183 (1964).

    Article  Google Scholar 

  29. S. Vyazovkin and N. Sbirrazzuoli, Macromolecules 29, 1867 (1996).

    Article  CAS  Google Scholar 

  30. S. Vyazovkin and C.A. Wight, J. Phys. Chem. A 101, 5653 (1997).

    Article  CAS  Google Scholar 

  31. S. Vyazovkin and C.A. Wight, J. Phys. Chem. A 101, 8279 (1997).

    Article  CAS  Google Scholar 

  32. T. Ozawa, Bull. Chem. Soc. Jpn. 57, 639 (1984).

    Article  CAS  Google Scholar 

  33. T. Ozawa, Thermochim. Acta 100, 109 (1986).

    Article  CAS  Google Scholar 

  34. J. Málek, Thermochim. Acta 355, 239 (2000).

    Article  Google Scholar 

  35. N. Koga and J. Šesták, J. Am. Ceram. Soc. 83, 1753 (2000).

    Article  CAS  Google Scholar 

  36. J. Málek, Thermochim. Acta 267, 61 (1995).

    Article  Google Scholar 

  37. J. Málek, Thermochim. Acta 200, 257 (1992).

    Article  Google Scholar 

  38. J.M. Criado, Thermochim. Acta 24, 186 (1978).

    Article  CAS  Google Scholar 

  39. J. Šesták, J. Málek, Solid State Ionics 63–65, 254 (1993).

    Google Scholar 

  40. N. Koga, J. Málek, J. Šesták, and H. Tanaka, Netsu Sokutei 20, 210 (1993).

    Google Scholar 

  41. J. Málek, Sci. Papers Univ. Pardubice, Series A 2, 177 (1996).

    Google Scholar 

  42. T. Hatakeyama and Zhenhai Lin, Handbook of Thermal Analysis (John Wiley & Sons, Chichester, 1998).

    Google Scholar 

  43. J. Málek and J. Klikorka, J. Therm. Anal. 32, 1883 (1987).

    Article  Google Scholar 

  44. J. Málek, L. Tichý, and J. Klikorka, J. Therm. Anal. 33, 667 (1988).

    Article  Google Scholar 

  45. J. Málek, Thermochim. Acta 129, 293 (1988).

    Article  Google Scholar 

  46. J. Málek, J. Non-Crystalline Solids 107, 323 (1989).

    Article  Google Scholar 

  47. J. Málek and V. Smrčka, Thermochim. Acta 186, 153 (1991).

    Article  Google Scholar 

  48. J. Málek and V. Smrčka, Trends in Non-Crystalline Solids (World Scientific Publishing Co., Singapore, 1992) p. 189.

    Google Scholar 

  49. J. Málek and L. Tichý, Trends in Non-Crystalline Solids (World Scientific Publishing Co., Singapore, 1992), p. 192.

    Google Scholar 

  50. J. Málek, J. Therm. Anal. 40, 159 (1993).

    Article  Google Scholar 

  51. E. Černošková, Z.G. Ivanova, and V. Pamukhieva, Thermochim. Acta 316, 97 (1998).

    Article  Google Scholar 

  52. J. Málek, Y. Messaddeq, S. Inoue, and T. Mitsuhashi, J. Mater. Sci. 30, 3082 (1995).

    Article  Google Scholar 

  53. P. Mošner, P. Prokůpkova, and L. Koudelka, J. Therm. Anal. 54, 937 (1998).

    Article  Google Scholar 

  54. P. Mošner and L. Koudelka, Sci. Papers Univ. Pardubice, Series A 4, 75 (1998).

    Google Scholar 

  55. J. Málek, S. Matsuda, A. Watanabe, T. Ikegami, and T. Mitsuhashi, Thermochim. Acta 267, 181 (1995).

    Article  Google Scholar 

  56. J. Málek, A. Watanabe, and T. Mitsuhashi, Thermochim. Acta 282–283, 131 (1996).

    Article  Google Scholar 

  57. J. Málek, T. Mitsuhashi, J. Ramírez-Castellanos, and Y. Matsui, J. Mater. Res. 14, 1834 (1999).

    Article  Google Scholar 

  58. J. Málek, A. Watanabe, and T. Mitsuhashi, J. Therm. Anal. Cal. 60, 699 (2000).

    Article  Google Scholar 

  59. Y. Calventus, P. Colomer, J. Málek, S. Montserrat, F. López-Carrasquero, A. Martínez de Ilarduya, and S. Muňoz-Guerra, Polymer 40, 801 (1999).

    Article  CAS  Google Scholar 

  60. F. Baitalow, H.G. Schmidt, and G. Wolf, Thermochim. Acta 337, 111 (1999).

    Article  CAS  Google Scholar 

  61. S. Montserrat and J. Málek, Thermochim. Acta 228, 47 (1993).

    Article  CAS  Google Scholar 

  62. S. Montserrat, C. Flaqué, M. Calafell, G. Andreu, and J. Málek, Thermochim. Acta 269–270, 213 (1995).

    Article  Google Scholar 

  63. S. Montserrat, C. Flaqué, P. Pagés, and J. Málek, J. Appl. Polym. Sci. 56, 1413 (1995).

    Article  CAS  Google Scholar 

  64. S. Montserrat, G. Andreu, P. Cortés, Y. Calventus, P. Colomer, J.M. Hutchinson, and J. Málek, J. Appl. Polym. Sci. 61, 1663 (1996).

    Article  CAS  Google Scholar 

  65. S. Montserrat, J. Málek, and P. Colomer, Thermochim. Acta 313, 83 (1998).

    Article  CAS  Google Scholar 

  66. S. Montserrat, J. Málek, and P. Colomer, Thermochim. Acta 336, 65 (1999).

    Article  CAS  Google Scholar 

  67. N. Koga, Thermochim. Acta 258, 145 (1995).

    Article  CAS  Google Scholar 

  68. N. Koga, J.M. Criado, and H. Tanaka, Thermochim. Acta 340–341, 387 (1999).

    Article  Google Scholar 

  69. Z. Lu, L. Yang, and J. Sun, J. Therm. Anal. 44, 1391 (1995).

    Article  CAS  Google Scholar 

  70. J. Sun, Z. Lu, Y. Li, and J. Dai, J. Therm. Anal. Cal. 58, 383 (1999).

    Article  CAS  Google Scholar 

  71. L. Beneš, E. Černošková, J. Málek, K. Melánová, P. Patrono, and V. Zima, J. Incl. Phenom. Macro. Chem. 36, 163 (2000).

    Article  Google Scholar 

  72. V.M. Gorbatchev, J. Therm. Anal. 27, 151 (1983).

    Article  Google Scholar 

  73. J. Málek, Thermochim. Acta 138, 337 (1989).

    Article  Google Scholar 

  74. E.S. Freeman and B. Carroll, J. Phys. Chem. 62, 394 (1958).

    Article  CAS  Google Scholar 

  75. J. Málek and J.M. Criado, Thermochim. Acta 236, 187 (1994).

    Article  Google Scholar 

  76. V. Šatava, Thermochim. Acta 2, 423 (1971).

    Article  Google Scholar 

  77. J.A. Augis and J.E. Bennett, J. Therm. Anal. 13, 283 (1978).

    Article  CAS  Google Scholar 

  78. J. Málek, J.M. Criado, F.J. Gotor, and J. Šesták, Thermochim. Acta 322, 77 (1988).

    Article  Google Scholar 

  79. D.W. Henderson, J. Therm. Anal. 15, 325 (1979).

    Article  CAS  Google Scholar 

  80. D.W. Henderson, J. Non-Cryst. Solids 30, 301 (1979).

    Article  CAS  Google Scholar 

  81. J. Málek, J. Therm. Anal. Cal. 56, 763 (1999).

    Article  Google Scholar 

  82. J. Málek, J.M. Criado, J. Šesták, and J. Militký, Thermochim. Acta 153, 429 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Málek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Málek, J., Mitsuhashi, T. & Criado, J.M. Kinetic analysis of solid-state processes. Journal of Materials Research 16, 1862–1871 (2001). https://doi.org/10.1557/JMR.2001.0255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0255

Navigation