Log in

A microstructural study of mechanical alloying of Fe and Sn powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Elemental Fe and Sn powders in the ratio of 1:2 were ball-milled for various times at room temperature, and phase transformations in the powders were studied by 57Fe and 119Sn Mössbauer spectrometries, transmission electron microscopy, and x-ray diffractometry. Although Fe-Sn alloys are not obvious candidates for solid-state amorphization reactions, an amorphous phase formed after only a few hours of ball milling. Nanocrystalline intermetallic FeSn2 particles nucleated and grew within the amorphous phase, and FeSn2 became the major phase after 10–20 h of ball milling. These small particles were superparamagnetic, and were above the blocking temperature at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. White, Ph.D. Dissertation, Stanford University, 1979.

  2. C. C. Koch, O. B. Kavin, C. G. McKamey, and J. O. Scarbrough, Appl. Phys. Lett. 43, 1017 (1983).

    Article  CAS  Google Scholar 

  3. A. W. Weeber and H. Bakker, Physica B 153, 93 (1988).

    Article  CAS  Google Scholar 

  4. L. Schultz, J. Less-Common Met. 145, 233 (1988).

    Article  CAS  Google Scholar 

  5. H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, Metall. Trans. A 21A, 2333 (1990).

    Article  CAS  Google Scholar 

  6. B. Fultz, G. Le Caër, and P. Matteazzi, J. Mater. Res. 4, 1450–1455 (1989).

    Article  CAS  Google Scholar 

  7. D. C. Price, J. Phys. F: Metal Phys. 4, 639 (1974).

    Article  CAS  Google Scholar 

  8. S. M. Dubiel and V. Znamirowski, Hyperfine Interactions 9, 477 (1981).

    Article  CAS  Google Scholar 

  9. G. Trumpy, E. Both, C. Djega-Mariadassou, and P. Lecocq, Phys. Rev. B 2, 3477 (1970).

    Article  Google Scholar 

  10. M. Shimotomai and M. Doyama, Hyperfine Interactions 9, 329 (1981).

    Article  CAS  Google Scholar 

  11. M. Shimotomai, R. R. Hasiguti, and S. Umeyama, Phys. Rev. B 18, 2097 (1978).

    Article  CAS  Google Scholar 

  12. G. Le Caër, B. Malaman, and B. Roques, J. Phys. F: Metal Phys. 8, 323 (1978).

    Article  Google Scholar 

  13. G. Le Caër, B. Malaman, L. Haggström, and T. Ericsson, J. Phys. F: Metal Phys. 9, 1905 (1979).

    Article  Google Scholar 

  14. L. Haggström, T. Ericsson, R. Wäppling, and K. Chandra, Physica Scripta 11, 47 (1975).

    Article  Google Scholar 

  15. G. Le Caër, B. Malaman, G. Venturini, D. Fruchart, and B. Roques, J. Phys. F: Metal Phys. 15, 1813 (1985).

    Article  Google Scholar 

  16. G. Venturini, B. Malaman, G. Le Caër, and D. Fruchart, Phys. Rev. B 35, 7038 (1987).

    Article  CAS  Google Scholar 

  17. B. Rodmacq, M. Piecuch, C. Janot, G. Marchal, and P. Mangin, Phys. Rev. B 21, 1911 (1980).

    Article  CAS  Google Scholar 

  18. W. L. Johnson, Progr. Mater. Sci. 30, 81 (1986).

    Article  CAS  Google Scholar 

  19. K. Samwer, Phys. Rep. 161, 1 (1988).

    Article  CAS  Google Scholar 

  20. P. Guilmin, P. Guyot, and G. Marchal, Phys. Lett. 109 A, 174 (1985).

    Article  Google Scholar 

  21. T. J. Tiainen and R. B. Schwarz, J. Less-Common Met. 140, 99 (1988).

    Article  CAS  Google Scholar 

  22. Z. Lubyova, P. Fellner, and K. Matiasovsky, Z. Metallk. 66, 179 (1975).

    CAS  Google Scholar 

  23. N. Sarafianos, Mater. Sci. Eng. 80, 87 (1986).

    Article  CAS  Google Scholar 

  24. F. R. De Boer, R. Boom, W. C. M. Matthews, A. R. Miedema, and A. K. Niessen, Cohesion in Metals (North Holland, Amsterdam, 1988), Vol. 1.

    Google Scholar 

  25. P. J. Desré and A. R. Yavari, Phys. Rev. Lett. 64, 1533 (1990).

    Article  Google Scholar 

  26. A. R. Yavari and P.J. Desré, Phys. Rev. Lett. 65, 2571 (1990).

    Article  CAS  Google Scholar 

  27. C. C. Koch, Annu. Rev. Mater. Sci. 19, 121 (1989).

    Article  CAS  Google Scholar 

  28. S. Nasu, P. H. Shingu, K. N. Ishihara, and F. E. Fujita, Hyperfine Interactions 55, 1043 (1990).

    Article  CAS  Google Scholar 

  29. V. A. Varnek, L. I. Strugova, and E. G. Avvakumov, Sov. Phys.–Solid State 16, 1186 (1974).

    Google Scholar 

  30. G. Le Caër and J. M. Dubois, J. Phys. E 12, 1083 (1979).

    Article  Google Scholar 

  31. J. F. Geny, G. Marchal, Ph. Mangin, Chr. Janot, and M. Piecuch, Phys. Rev. B 25, 7449 (1982).

    Article  CAS  Google Scholar 

  32. J. G. Stevens and W. L. Gettys, Isomer Shift Reference Scales, Mössbauer Effect Data Center, University of North Carolina (1981).

    Google Scholar 

  33. C. Hohenemser, Phys. Rev. A 139, 185 (1965).

    Article  CAS  Google Scholar 

  34. I. P. Suzdalev, M. Ya Gen, V. I. Goldanskii, and E. F. Makarov, Sov. Phys. JETP 24, 79 (1967).

    Google Scholar 

  35. M. Cordey Hayes, Chemical Applications of Mössbauer Spectroscopy, edited by V. I. Goldanskii and R. H. Herber (Academic Press, New York, 1968), Chap. 5.

  36. V. I. Nikolaev and V. S. Rusakov, Sov. Phys.–Solid State 17, 200 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Caër, G., Matteazzi, P. & Fultz, B. A microstructural study of mechanical alloying of Fe and Sn powders. Journal of Materials Research 7, 1387–1395 (1992). https://doi.org/10.1557/JMR.1992.1387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1992.1387

Navigation