Log in

The nuclear fragmentation phase transition and rare isotope production

  • Published:
Acta Physica Hungarica Series A, Heavy Ion Physics

Abstract

Of all phase transitions in nuclear matter, the fragmentation phase transition is perhaps the one for which there is the best experimental evidence as of now. In addition, theoretical models have been developed to a degree where detailed comparisons are possible. With the advent of rare isotope production facilities using projectile fragmentation techniques (NSCL, GSI, ..., and hopefully RIA in the coming decade), the main interest in this field is beginning to shift towards the exploration of the isospin degree of freedom in the nuclear equation of state. Here we employ a statistical multifragmentation model and discuss the connection between the width of the isotope distribution and the isospin term in the nuclear equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.-A. Li, C.M. Ko and W. Bauer, Int. J. Mod. Phys. E 7(2) (1998) 147.

    Article  ADS  Google Scholar 

  2. W. Bauer, C.K. Gelbke and S. Pratt, Ann. Rev. Nucl. Part. Sci. 42 (1992) 77; W. Bauer, Prog. in Part. and Nucl. Phys. 30 (1993) 45.

    Article  ADS  Google Scholar 

  3. W. Bauer et al., Phys. Lett. B 150 (1985) 53; W. Bauer et al., Nucl. Phys. A452 (1986) 699; X. Campi, J. Phys. A 19 (1986) L917; T. Biró et al., Nucl. Phys. A459 (1986) 692; J. Nemeth et al., Z. Phys. A 325 (1986) 347.

    Article  ADS  Google Scholar 

  4. W. Bauer and A. Botvina, Phys. Rev. C 52 (1995) R1760; W. Bauer and A. Botvina, Phys. Rev. C 55 (1997) 546.

    Article  ADS  Google Scholar 

  5. T. Li et al., Phys. Rev. Lett. 70 (1993) 1924; T. Li et al., Phys. Rev. C 49 (1994) 1630.

    Article  ADS  Google Scholar 

  6. A. Coniglio and W. Klein, J. Phys. A 13 (1980) 2775.

    Article  ADS  Google Scholar 

  7. X. Campl and H. Krivine, Nucl. Phys. A620 (1997) 46.

    Article  Google Scholar 

  8. J.B. Elliott et al., Phys. Rev. C 49 (1994) 3185.

    Article  ADS  Google Scholar 

  9. M.L. Gilkes et al., Phys. Rev. Lett. 73 (1994) 1590.

    Article  ADS  Google Scholar 

  10. H.G. Ritter et al., Nucl. Phys. A583 (1995) 491c.

    Article  ADS  Google Scholar 

  11. J.P. Bondorf, A.S. Botvina, A.S. Il**ov, I.N. Mishustin and K. Sneppen, Phys. Rep. 257 (1995) 133.

    Article  ADS  Google Scholar 

  12. T. LeBrun et al., Phys. Rev. Lett. 72 (1994) 3965; R. Ali et al., Nuclear Instruments and Methods in Physics Research B96 (1995) 545; T. LeBrun et al., Nuclear Instruments and Methods in Physics Research B98 (1995) 479; S. Cheng et al., Phys. Rev. A 54 (1996) 3182.

    Article  ADS  Google Scholar 

  13. S. Pratt, W. Bauer, C. Morling and P. Underhill, Phys. Rev. C (2000), in print.

  14. J. Pan, S. Das Gupta and M. Grant, Phys. Rev. C 57 (1998) 1839; S.K. Samaddar and S. Das Gupta, Phys. Rev. C 61 (2000) 034610.

    Article  ADS  Google Scholar 

  15. Ph. Chomaz and F. Gulminelli, Phys. Lett. B 447 (1999) 221.

    Article  ADS  Google Scholar 

  16. G. Kortemeyer, W. Bauer and G.J. Kunde, Phys. Rev. C 55 (1997) 2730.

    Article  ADS  Google Scholar 

  17. H.M. Harreis and W. Bauer, Phys. Rev. B 62 (2000) 8719.

    Article  ADS  Google Scholar 

  18. H.S. Xu et al., Phys. Rev. Lett. 85 (1999) 716.

    Article  ADS  Google Scholar 

  19. K.C. Chase and A.Z. Mekjian, Phys. Rev. C 52 (1995) R2339.

    Article  ADS  Google Scholar 

  20. S. Das Gupta and A.Z. Mekjian, Phys. Rev. C 57 (1998) 1361.

    Article  ADS  Google Scholar 

  21. S. Pratt and S. Das Gupta, Phys. Rev. C 62 (2000) 044603.

    Article  ADS  Google Scholar 

  22. A. Majumder and S. Das Gupta, Phys. Rev. C 61 (2000) 034603.

    Article  ADS  Google Scholar 

  23. P. Möller, J.R. Nix, W.D. Myers and W.J. Swiatecki, Atomic Data and Nuclear Data Tables 59 (1995) 185.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, W., Pratt, S., Morling, C. et al. The nuclear fragmentation phase transition and rare isotope production. APH N.S., Heavy Ion Physics 14, 33–42 (2001). https://doi.org/10.1556/APH.14.2001.1-4.5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1556/APH.14.2001.1-4.5

Keywords

PACS

Navigation