Log in

Determination of the Fractional Order in Semilinear Subdiffusion Equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We analyze the inverse boundary value-problem to determine the fractional order ν of nonautonomous semilinear subdiffusion equations with memory terms from observations of their solutions during small time. We obtain an explicit formula reconstructing the order. Based on the Tikhonov regularization scheme and the quasi-optimality criterion, we construct the computational algorithm to find the order ν from noisy discrete measurements. We present several numerical tests illustrating the algorithm in action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables Dover Publications Washington, (1965).

    MATH  Google Scholar 

  2. B. Berkowitz, J. Klafter, R. Metzler, H. Scher, Physical pictures of transport in heterogeneous media: Advection-dispersion random-walk, and fractional derivative formulations. Water Resour. Res. 38, No 10 (2002), 9-1-9-1210.1029/2001WR001030.

    Google Scholar 

  3. M. Caputo, Models of flux in porous media with memory. Water Resour. Res. 36, No 3 (2000), 693–705; DOI:10.1029/1999WR900299.

    Article  MathSciNet  Google Scholar 

  4. M. Caputo, J.M. Carcione, M.A.B. Botelho, Modeling extreme-event precursors with the fractional diffusion equation. Fract. Calc. Appl. Anal. 18, No 1 (2015), 208–222; DOI:10.1515/fca-2015-0014 https://www.degruyter.com/view/journals/fca/18/1/fca.18.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  5. M. Caputo, W. Plastino, Diffusion in porous layers with memory. Geophys. J. Internat. 158, No 1 (2004), 385–39610.1111/j.1365-246X.2004.02290.x.

    Article  Google Scholar 

  6. K. Diethelm, N.J. Ford, A.D. Freed, Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194, No 6-8 (2005), 743–773; DOI:10.1016/j.cma.2004.06.006.

    Article  MathSciNet  Google Scholar 

  7. N. Engheia, On the role of fractional calculus in electromagnetic theory. IEEE Antennas and Propagation Mag. 39, No 4 (1997), 35–4610.1109/74.632994.

    Article  Google Scholar 

  8. M. Fornasier, V. Naumova, S.V. Pereverzyev, Parameter choice strategies for multipenalty regularization. SIAM J. Numer. Anal. 52, No 4 (2014), 1770–1794; DOI:10.1137/130930248.

    Article  MathSciNet  Google Scholar 

  9. W.G. Glöckle, T.F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68, No 1 (1995), 46–53; DOI:10.1016/S0006-3495(95)80157-8.

    Article  Google Scholar 

  10. Y. Hatano, J. Nakagawa, Sh. Wang, M. Yamamoto, Determination of order in fractional diffusion equation. J. Math-for-Industry 5, (2013), 51–57.

    MathSciNet  MATH  Google Scholar 

  11. M. Huntul, D. Lesnic, T. Johansson, Determination of an additive time- and space-dependent coefficient in the heat equation. Int. J. Numer. Meth. for Heat & Fluid Flow. 28, No 6 (2018), 1352–1373; DOI:10.1108/HFF-04-2017-0153.

    Article  Google Scholar 

  12. G. Iaffaldano, M. Caputo, S. Martino, Experimental and theoretical memory diffusion of water in sand. Hydrol. Earth. Syst. Sci. Discuss. 2, (2005), 1329–1357.

    Google Scholar 

  13. J. Janno, Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation. Electron. J. Diff. Equations. 2016, No 199 (2016), 1–28.

    MathSciNet  MATH  Google Scholar 

  14. J. Janno, N. Kinash, Reconstruction of an order of derivative and a source term in a fractional diffusion equation from final measurements. Inv. Probl. 34, No 2 (2018), 025007, DOI:10.1088/1361-6420/aaa0f0.

    Google Scholar 

  15. N. Kinash, J. Janno, Inverse problem for a generalized subdiffusion equation with final overdetermination. Math. Modell. Anal. 24, No 2 (2019), 236–262; DOI:10.3846/mma.2019.016.

    Article  MathSciNet  Google Scholar 

  16. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations Elsevier Science B.V. Amsterdam, (2006).

    MATH  Google Scholar 

  17. M. Krasnoschok, V. Pata, N. Vasylyeva, Semilinear subdiffusion with memory in the one-dimensional case. Nonlinear Anal. 165, (2017), 1–17; DOI:10.1016/j.na.2017.09.004.

    Article  MathSciNet  Google Scholar 

  18. M. Krasnoschok, V. Pata, N. Vasylyeva, Semilinear subdiffusion with memory in multidimensional domains. Mathematische Nachrichten 292, No 7 (2019), 1490–1513; DOI:10.1002/mana.201700405.

    Article  MathSciNet  Google Scholar 

  19. M. Krasnoschok, V. Pata, N. Vasylyeva, Solvability of linear boundary value problems for subdiffusion equations with memory. J. Int. Eq. Appl. 30, No 3 (2018), 417–445; DOI:10.1216/JIE-2018-30-3-417.

    MathSciNet  MATH  Google Scholar 

  20. M. Krasnoschok, S. Pereverzyev, S.V. Siryk, N. Vasylyeva, Regularized reconstruction of the order in semilinear subdiffusion with memory J. Cheng, S. Lu, M. Yamamoto, Inverse Problems and Related Topics (ICIP2 2018) Springer Proc. Mathematics & Statistics 310, (2020), 205–236; DOI:10.1007/978-981-15-1592-7_10.

    Article  Google Scholar 

  21. Z. Li, Y. Liu, M. Yamamoto, Handbook of Fractional Calculus with Applications De Gruyter Berlin, 2, (2019), 431–442.

    Google Scholar 

  22. Z. Li, M. Yamamoto, Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation. Appl. Anal. 94, No 3 (2015), 570–579; DOI:10.1080/00036811.2014.926335.

    Article  MathSciNet  Google Scholar 

  23. G. Li, D. Zhang, X. Jia, M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inv. Probl. 29, No 6 (2013), #065014; DOI:10.1088/0266-5611/29/6/065014.

    Google Scholar 

  24. S. Lu, S.V. Pereverzyev, Regularization Theory for Ill-Posed Problems: Selected Topics De Gruyter Berlin, (2013).

    Book  Google Scholar 

  25. M.M. Meerschart, A. Sikorskii, Stochastic Models for Fractional Calculus De Gruyter Berlin, (2011).

    Book  Google Scholar 

  26. J. Nakagawa, K. Sakamoto, M. Yamamoto, Overview to mathematical analysis for fractional diffusion equations–new mathematical aspects motivated by industrial collaboration. J. Math-for-Industry 2, (2010), 99–108.

    MathSciNet  MATH  Google Scholar 

  27. Z. Ruan, W. Zhang, Z. Wang, Simultaneous inversion of the fractional order and the space-dependent source term for the time-fractional diffusion equation. Appl. Math. Comput. 328, (2018), 365–379; DOI:10.1016/j.amc.2018.01.025.

    Article  MathSciNet  Google Scholar 

  28. F. Shen, W. Tan, Y. Zhao, T. Masuoka, The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 7, No 5 (2006), 1072–1080; DOI:10.1016/j.nonrwa.2005.09.007.

    Article  MathSciNet  Google Scholar 

  29. S.V. Siryk, A note on the application of the Guermond-Pasquetti mass lum** correction technique for convection-diffusion problems. J. Comput. Phys. 376, (2019), 1273–1291; DOI:10.1016/j.jcp.2018.10.016.

    Article  MathSciNet  Google Scholar 

  30. L.L. Sun, Y. Zhang, T. Wei, Recovering the time dependent potential function in a multi-term time fractional diffusion equation. Appl. Numeric. Math. 135, (2019), 228–245; DOI:10.1016/j.apnum.2018.09.001.

    Article  MathSciNet  Google Scholar 

  31. C. Sun, G. Li, X. Jia, Numerical inversion for the multiple fractional orders in the multiterm TFDE. Adv. Math. Phys. 2017, (2017), 3204959, DOI:10.1155/2017/3204959.

    MathSciNet  MATH  Google Scholar 

  32. G. Szegö, Orthogonal Polynomials 4th Ed. AMS Providence, (1975).

    MATH  Google Scholar 

  33. S. Tatar, R. Tinaztepe, S. Ulusoy, Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equations. Appl. Anal. 95, No 1 (2016), 1–23 DOI:10.1080/00036811.2014.984291.

    Article  MathSciNet  Google Scholar 

  34. A.N. Tikhonov, V.B. Glasko, Use of the regularization methods in nonlinear problems. USSR Comput. Math. Math. Phys. 5, No 3 (1965), 93–10710.1016/0041-5553(65)90150-3.

    Article  Google Scholar 

  35. B. Yu, X. Jiang, H. Qi, An inverse problem to estimate an unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid. Acta Mech. Sin. 31, No 2 (2015), 153–161; DOI:10.1007/s10409-015-0408-7.

    Article  MathSciNet  Google Scholar 

  36. G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, No 6 (2002), 461–580; DOI:10.1016/S0370-1573(02)00331-9.

    Article  MathSciNet  Google Scholar 

  37. Y.X. Zhang, J. Jia, L. Yan, Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation. Inv. Probl. 34, No 12 (2018), 125002; DOI:10.1088/1361-6420/aae04f.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Krasnoschok.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnoschok, M., Pereverzyev, S., Siryk, S.V. et al. Determination of the Fractional Order in Semilinear Subdiffusion Equations. Fract Calc Appl Anal 23, 694–722 (2020). https://doi.org/10.1515/fca-2020-0035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0035

MSC 2010

Key Words and Phrases

Navigation