Log in

A Numerical Study of the Homogeneous Elliptic Equation with Fractional Boundary Conditions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We consider the homogeneous equation Au = 0, where A is a symmetric and coercive elliptic operator in H1(Ω) with Ω bounded domain in ℝd. The boundary conditions involve fractional power α, 0 < α < 1, of the Steklov spectral operator arising in Dirichlet to Neumann map. For such problems we discuss two different numerical methods: (1) a computational algorithm based on an approximation of the integral representation of the fractional power of the operator and (2) numerical technique involving an auxiliary Cauchy problem for an ultra-parabolic equation and its subsequent approximation by a time step** technique. For both methods we present numerical experiment for a model two-dimensional problem that demonstrate the accuracy, efficiency, and stability of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Aceto and P. Novati, Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. SIAM J. Scientific Computing 39, No 1 (2017), A214–A228; doi: 10.1137/16M1064714.

  2. M. G. Armentano, The effect of reduced integration in the Steklov eigenvalue problem. ESAIM: Mathematical Modelling and Numerical Analysis 38, No 1 (2004), 27–36; doi: 10.1051/m2an:2004002.

    Article  MathSciNet  Google Scholar 

  3. I. Babuska and J. Osborn, Eigenvalue problems. In: Handbook of Numerical Analysis Vol. 2, North-Holland, Amsterdam (1991), 641–787.

    Google Scholar 

  4. A. Bonito and J. Pasciak, Numerical approximation of fractional powers of elliptic operators. Mathematics of Computation 84, No 295 (2015), 2083–2110; DOI: 10.1090/S0025-5718-2015-02937-8.

    Article  MathSciNet  Google Scholar 

  5. A. Bueno-Orovio, D. Kay, and K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numerical Mathematics 54, No 4 (2014), 1–18; doi:10.1007/s10543-014-0484-2.

    Article  MathSciNet  Google Scholar 

  6. K. Burrage, N. Hale, and D. Kay, An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM Journal on Scientific Computing 34, No 4 (2012), A2145–A2172; DOI:10.1137/110847007.

    Article  MathSciNet  Google Scholar 

  7. I. Gavrilyuk, W. Hackbusch, and B. Khoromskij, Data-sparse approximation to the operator-valued functions of elliptic operator. Mathematics of Computation 73, No 247 (2004), 1297–1324; doi: http://www.jstor.org/stable/4099897.

    Article  MathSciNet  Google Scholar 

  8. I. Gavrilyuk, W. Hackbusch, and B. Khoromskij, Data-sparse approximation to a class of operator-valued functions. Mathematics of Computation 74, No 250 (2005), 681–708; doi: 10.1090/S0025-5718-04-01703-X.

    Article  MathSciNet  Google Scholar 

  9. S. Harizanov, R. Lazarov, P. Marinov, S. Margenov, and Y. Vutov, Optimal solvers for linear systems with fractional powers of sparse SPD matrices. Submitted to: Numerical Linear Algebra with Applications, posted as ar**v:1612.04846v1.

  10. N. J. Higham, Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008).

    Book  Google Scholar 

  11. M. Ilić, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation.I. Fract. Calc. Appl. Anal. 8, No 3 (2005), 323–341; at http://www.math.bas.bg/∼fcaa.

    MathSciNet  MATH  Google Scholar 

  12. M. Ilić, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, II. With nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9, No 4 (2006), 333–349; at http://www.math.bas.bg/∼fcaa.

    MathSciNet  MATH  Google Scholar 

  13. M. Ilić, I. W. Turner, and V. Anh, A numerical solution using an adaptively preconditioned Lanczos method for a class of linear systems related with the fractional Poisson equation. Intern. J. of Stochastic Analysis (2008), 1–26, Article ID 104525.

    Google Scholar 

  14. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Math. Studies, Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  15. M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions. Noordhoff International Publishing (1976).

    Book  Google Scholar 

  16. R. Metzler, J. H. Jeon, A. G. Cherstvy, and E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Physical Chemistry Chemical Physics 16, No 44 (2014), 24128–24164; doi: 10.1039/c4cp03465a.

    Article  Google Scholar 

  17. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering, Vol. 198, Academic Press (1998).

    MATH  Google Scholar 

  18. A. A. Samarskii, The Theory of Difference Schemes. Marcel Dekker, New York (2001).

    Book  Google Scholar 

  19. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Ser. in Computational Mathematics, Vol. 25, Springer (2006).

    MATH  Google Scholar 

  20. P. N. Vabishchevich, Numerically solving an equation for fractional powers of elliptic operators. Journal of Computational Physics 282, No 1 (2015), 289–302; doi: 10.1016/j.jcp.2014.11.02.

    Article  MathSciNet  Google Scholar 

  21. P. N. Vabishchevich, Numerical solution of nonstationary problems for a space-fractional diffusion equation. Fract. Calc. Appl. Anal. 19, No 1 (2016), 116–139; DOI: 10.1515/fca-2016-0007; at https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raytcho Lazarov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarov, R., Vabishchevich, P. A Numerical Study of the Homogeneous Elliptic Equation with Fractional Boundary Conditions. FCAA 20, 337–351 (2017). https://doi.org/10.1515/fca-2017-0018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2017-0018

Keywords

Keywords

Navigation