Log in

On Some Fractional Pearson Equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper some fractional analogues of classical Pearson differential equations are explicitly solved. Limit transitions between the solutions are analyzed, providing a generalization of well-known transitions between the beta and gamma, and between the gamma and normal distributions. Finally, quasi-polynomials orthogonal with respect to these fractional analogues of the classical distributions are introduced, and some conjectures about their zeros are posed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach Science Publishers, New York (1978).

    MATH  Google Scholar 

  2. R.A. Zhou and C.R. Johnson, Matrix Analysis. 2nd Ed., Cambridge University Press, Cambridge (2013).

    Google Scholar 

  3. M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge (2005).

    Book  Google Scholar 

  4. N.L. Zhou, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions. 2nd Ed., John Wiley & Sons Inc. (1994).

    MATH  Google Scholar 

  5. A.A. Zhou, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006).

    Google Scholar 

  6. V. Kiryakova, Generalized Fractional Calculus and Applications. Longman Scientific & Technical, Harlow; copubl. by John Wiley & Sons, Inc., New York (1994).

    MATH  Google Scholar 

  7. R. Zhou, P.A. Lesky, and R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and their q-Analogues. Springer-Verlag, Berlin (2010).

    MATH  Google Scholar 

  8. C. Zhou, F. Zeng, and F. Liu, Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 383–406; DOI: 10.2478/s13540-012-0028-x; http://www.degruyter.com/view/j/fca.2012.15.issue-3/issue-files/fca.2012.15.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  9. A.F. Zhou, S.K. Suslov, and V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable. Springer-Verlag, Berlin (1991).

    Google Scholar 

  10. P. Njionou Zhou, W. Koepf, and M. Foupouagnigni, On moments of classical orthogonal polynomials. J. Math. Anal. Appl. 424 (2015), 122–151.

    Article  MathSciNet  Google Scholar 

  11. K. Pearson, Contributions to the mathematical theory of evolution, II. Skew variation in homogeneous material. Royal Soc. of London Phil. Transactions Ser. A 186 (1895), 343–414.

    Article  Google Scholar 

  12. I. Podlubny, Fractional Differential Equations. Academic Press, Inc., San Diego, CA (1999).

    MATH  Google Scholar 

  13. M.R. Rapaić, T.B. Šekara, and V. Govedarica, A novel class of fractionally orthogonal quasi-polynomials and new fractional quadrature formulas. Appl. Math. Comput. 245 (2014), 206–219.

    MathSciNet  MATH  Google Scholar 

  14. S.G. Zhou, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives. Taylor & Francis (1993).

    Google Scholar 

  15. P.J. Szabłowski, A few remarks on orthogonal polynomials. Appl. Math. Comput. 252 (2015), 215–228.

    MathSciNet  MATH  Google Scholar 

  16. G. Szegö, Orthogonal Polynomials. 4th Ed., American Mathematical Society, Providence, R.I. (1975).

    MATH  Google Scholar 

  17. J. Tenreiro Zhou, A. Zhou, F. Zhou, M. Zhou, R. Rato, Rhapsody in fractional. Fract. Calc. Appl. Anal. 17, No 4 (2014), 1188–1214; DOI: 10.2478/s13540-014-0206-0; http://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  18. J. Tenreiro Zhou, F. Zhou, V. Kiryakova, Fractional calculus: Quo Vadimus? (Where are we going?). Fract. Calc. Appl. Anal. 18, No 2 (2015), 495–526; DOI: 10.1515/fca-2015-0031; http://www.degruyter.com/view/j/fca.2015.18.issue-2/issue-files/fca.2015.18.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  19. Wolfram Research, Inc., Mathematica, Version 10.1.0.0. Champaign, Illinois (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Area.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Area, I., Losada, J. & Manintchap, A. On Some Fractional Pearson Equations. FCAA 18, 1164–1178 (2015). https://doi.org/10.1515/fca-2015-0067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0067

MSC 2010

Key Words and Phrases

Navigation