Log in

Organic epitaxy

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

This paper presents a critical discussion of epitaxy when applied to organic molecular materials. Indeed, the possible growth of ordered layers, with known and controlled structural relationships with the substrates, is fundamental both for a deep comprehension of the material properties themselves and for future device applications. This is well documented for inorganics, but it is valid also for organic materials, whose interest for organic molecular electronics is increasing more and more. Nonetheless, a complete and fully satisfactory description of organic epitaxy is still lacking. The commonly accepted criteria for identifying epitaxial growth of overlayers on solid substrates were elaborated for inorganic materials and therefore match with the characteristics of these materials (atom-based materials, strong interactions and chemical bonds, lattice parameters of few Å). When dealing with organics, the same criteria reveal serious limits, as indeed could be expected, given the peculiarities of these materials, in particular the rather weak intermolecular interactions holding together the solid. After reviewing the basic properties of molecular solids, the attempts to widen the known concept of inorganic epitaxy to organics are reported. Then, the techniques used to detect and study organic epitaxy are illustrated and the discussion of particularly relevant case studies proposed, which permits to demonstrate how additional criteria related to the intermolecular interactions at the film/substrate interface and to the molecular arrangement at the surface can better fit with the behavior of organic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silinsh E. A. and Capek V., Organic Molecular Crystals (AIP Press, New York) 1994.

    Google Scholar 

  2. Forrest S. R., Chem. Rev., 97 (1997) 1793.

    Article  Google Scholar 

  3. Pope M. and Swenberg C. E., Electronic Processes in Organic Crstals and Polymers, 2nd edition (Oxford University Press, Oxford) 1999.

    Google Scholar 

  4. Nalwa H. S. (Editor), Handbook of Organic Conductive Molecules and Polymers (John Wiley and Sons, Chichester) 1997.

    Google Scholar 

  5. Farchioni R. and Grosso G. (Editors), Organic Electronic Materials (Springer, Heidelberg) 2001.

    Google Scholar 

  6. Agranovich V. M. and Bassani F. (Editors), Electronic Excitations in Organic Based Nanostructures (Academic Press, Orlando) 2003.

    Google Scholar 

  7. Brutting W. (Editor), Physics of Organic Semiconductors (Wiley-VCH, Weinheim) 2005.

    Google Scholar 

  8. Schwoerer M. and Wolf H. C., Organic Molecular Solids (Wiley-VCH, Weinheim) 2007.

    Google Scholar 

  9. Organic electronics association, web site: www.vdma.org (look for “roadmap”).

  10. Fraxedas J., Adv. Mater., 14 (2002) 1603.

    Article  Google Scholar 

  11. Witte G. and Woll C., J. Mater. Res., 19 (2004) 1889.

    Article  ADS  Google Scholar 

  12. Schreiber F., Phys. Status Solidi (a), 201 (2004) 1037.

    Article  ADS  Google Scholar 

  13. Schnack J., Lect. Notes Phys., 645 (2004) 155; Blundell S. J., Lect. Notes Phys., 697 (2006) 345.

    Article  ADS  Google Scholar 

  14. Siegrist T., Kloc C., Laudise R. A., Katz H. E. and Haddon R. C., Adv. Mater., 10 (1998) 379.

    Article  Google Scholar 

  15. Horowitz G., J. Mater. Res., 19 (2004) 1946.

    Article  ADS  Google Scholar 

  16. Hoppe H. and Sariciftci N. S., J. Mater. Res., 19 (2004) 1924.

    Article  ADS  Google Scholar 

  17. Gledhill S. E., Scott B. and Gregg B. A., J. Mater. Res., 20 (2005) 3167.

    Article  ADS  Google Scholar 

  18. Davydov A. S., Theory of Molecular Excitons (Plenum Press, New York) 1971.

    Book  Google Scholar 

  19. Wittmann J. C. and Lotz B., Prog. Polym. Sci., 15 (1990) 909.

    Article  Google Scholar 

  20. Koma A., Prog. Crystal Growth Charact., 30 (1995) 129.

    Article  Google Scholar 

  21. Hooks D. E., Fritz T. and Ward M. D., Adv. Mater., 13 (2001) 1; 227.

    Article  Google Scholar 

  22. Mannsfeld S. C. B. and Fritz T., Phys. Rev. B, 69 (2004) 75416; 71 (2005) 23405.

    Article  ADS  Google Scholar 

  23. Mannsfeld S. C. B., Leo K. and Fritz T., Phys. Rev. Lett., 94 (2005) 056104.

    Article  ADS  Google Scholar 

  24. Mannsfeld S. C. B. and Fritz T., Mod. Phys. Lett. B, 20 (2006) 585.

    Article  ADS  Google Scholar 

  25. Campione M., Sassella A., Moret M., Papagni A., Trabattoni S., Resel R., Lengyel O., Marcon V. and Raos G., J. Am.. Chem. Soc., 128 (2006) 13378.

    Article  Google Scholar 

  26. Campione M., Caprioli S., Moret M. and Sassella A., J. Phys. Chem. C, 111 (2007) 12471.

    Article  Google Scholar 

  27. Campione M., Raimondo L. and Sassella A., J. Phys. Chem. C, 111 (2007) 19009.

    Article  Google Scholar 

  28. Sassella A., Campione M., Papagni A., Goletti C., Bussetti G., Chiaradia P., Marcon V. and Raos G., Chem.. Phys., 325 (2006) 193.

    Article  Google Scholar 

  29. Marcon V., Raos G., Campione M. and Sassella A., Crystal Growth & Design, 6 (2006) 1826.

    Article  Google Scholar 

  30. Herman M. A., Richter W. and Sitter H., Epitaxy (Springer-Verlag, Berlin) 2004.

    Book  Google Scholar 

  31. Miglio L. and Sassella A., in Encyclopedia of Condensed Matter Physics, edited by Bassani F., Liedl G. and Wyder P. (Academic Press-Elsevier, Amsterdam) 2005, p. 157.

  32. van Nostrand J. E., Jay Chey S. and Cahill D. G., Phys. Rev. B, 57 (1998) 12536.

    Article  ADS  Google Scholar 

  33. Bratland K. A., Foo Y. L., Soares Y. A. N. T., Spila T., Desjardins P. and Greene J. E., Phys. Rev. B, 67 (2003) 125322.

    Article  ADS  Google Scholar 

  34. Lunt L. L., Benziger J. B. and Forrest S. R., Adv. Mater, 19 (2007) 4229.

    Article  Google Scholar 

  35. Koma A., Surf. Sci., 267 (1992) 29.

    Article  ADS  Google Scholar 

  36. So F. F. and Forrest S. R., Phys. Rev. Lett., 66 (1991) 2649.

    Article  ADS  Google Scholar 

  37. Forrest S. R. and Burrows P. E., Supramol. Sci., 4 (1997) 127.

    Article  Google Scholar 

  38. Zhang X. and Forrest S. R., Phys. Rev. Lett., 71 (1993) 2765.

    Article  ADS  Google Scholar 

  39. Liu D. J., Selinger R. L. B. and Weeks J. D., J. Chem. Phys., 105 (1996) 4751.

    Article  ADS  Google Scholar 

  40. Dietrich T., Schlesser R., Erler B., Kundig A., Sitar Z. and Gunter P., J. Crystal Growth, 172 (1997) 473.

    Article  ADS  Google Scholar 

  41. Hoshino A., Isoda S., Kurata H. and Kobayashi T., J. Appl. Phys., 76 (1994) 4113; J. Crystal Growth, 146 (1995) 636; Jpn. J. Appl. Phys., 34 (1995) 3858.

    Article  ADS  Google Scholar 

  42. Hiller A. C. and Ward M. D., Phys. Rev. B, 54 (1996) 14037.

    Article  ADS  Google Scholar 

  43. Haber T., Campione M., Moret M., Thierry A., Sassella A. and Resel R., Physica E (2008) doi:10.1016/j.physe.2008.06.014

    Google Scholar 

  44. Goletti C., Bussetti G., Chiaradia P., Sassella A. and Borghesi A., Appl. Phys. Lett., 83 (2003) 4146; J. Phys.: Condens. Matter., 16 (2004) S4393.

    Article  ADS  Google Scholar 

  45. Weightman P., Martin D. S., Cole R. J. and Farrel T., Rep. Prog. Phys., 68 (2005) 1251.

    Article  ADS  Google Scholar 

  46. Proehl H., Dienel T., Nitsche R. and Fritz T., Phys. Rev. Lett., 93 (2004) 097403.

    Article  ADS  Google Scholar 

  47. Thierry A., Wittmann J. C., Lotz B., da Costa V., Le Moigne J., Campione M., Borghesi A., Sassella A., Plank L. and Resel R., Org. Electron., 5 (2004) 7.

    Article  Google Scholar 

  48. Campione M., Borghesi A., Moret M., Sassella A., Loτz B. and Thierry A., Org. Electron., 5 (2004) 141.

    Article  Google Scholar 

  49. Moret M., Campione M., Borghesi A., Miozzo L., Sassella A., Trabattoni S., Loτz B. and Thierry A., J. Mater. Chem., 15 (2005) 2444.

    Article  Google Scholar 

  50. Sassella A., Baldi I., Borghesi A., Campione M., Miozzo L., Moret M., Papagni A., Salerno A., Tavazzi B. and Trabattoni S., J. Phys. Chem. B, 109 (2005) 5150.

    Article  Google Scholar 

  51. Brock C. P. and Dunitz J. D., Acta Crystallogr. B, 46 (1990) 795.

    Article  Google Scholar 

  52. Born M. and Wolf E., Principles of Optics (Pergamon Press, Oxford) 1980.

    MATH  Google Scholar 

  53. Sassella A., Borghesi A., Spearman P. and Tavazzi S., Eur. Phys. J. B, 28 (2002) 385.

    Article  ADS  Google Scholar 

  54. Meinardi F., Cerminara M., Sassella A., Bonifacio R. and Tubino R., Phys. Rev. Lett., 91 (2003) 247401.

    Article  ADS  Google Scholar 

  55. Tavazzi S., Borghesi A., Campione M., Laicini M., Trabattoni S. and Spearman P., J. Chem.. Phys., 120 (2004) 7136.

    Article  ADS  Google Scholar 

  56. Laicini M., Spearman P., Tavazzi S. and Borghesi A., Phys. Rev. B, 71 (2005) 45212.

    Article  ADS  Google Scholar 

  57. Sassella A., Campione M., Moret M., Borghesi A., Goletti C., Bussetti G. and Chiaradia P., Phys. Rev. B, 71 (2005) 201311(R).

    Article  ADS  Google Scholar 

  58. Sassella A., Borghesi A., Campione M., Tavazzi S., Goletti C., Bussetti G. and Chiaradia P., Appl. Phys. Lett., 89 (2006) 261905.

    Article  ADS  Google Scholar 

  59. Horowitz G., Bachet B., Yassar A., Lang P., Demanze F., Fave J.-L. and Garnier F., Chem.. Mater., 7 (1995) 1337.

    Article  Google Scholar 

  60. Koller G., Berkebile S., Krenn J., Tzvetkov G., Hlawacek G., Lengyel O., Netzer F. P., Teichert C., Resel R. and Ramsey M. G., Adv. Mater., 16 (2004) 2159.

    Article  Google Scholar 

  61. Haber T., Oehzelt M., Andreev A., Thierry A., Sitter H., Smilgies D.-M., Schaffer B., Grogger W. and Resel R. J., Nanosci. Nanotechnol., 6 (2006) 698.

    Google Scholar 

  62. Siegrist T., Fleming R. M., Haddon R. C., Laudise R. A., Lovinger A. J., Katz H. E., Bridenbaugh P. D. and Davis D., J. Mater. Res., 10 (1995) 2170.

    Article  ADS  Google Scholar 

  63. Eremina T. A., Furmanova N. G., Malakhova L. F., Okhrimenko T. M. and Kuznetsov V. A., Crystallogr. Rep., 38 (1993) 554.

    ADS  Google Scholar 

  64. Borc J. and Sangwal K., Surf. Sci., 1 (2004) 555.

    Google Scholar 

  65. Campione M., Borghesi A., Laicini M., Sassella A., Goletti C., Bussetti G. and Chiaradia P., J. Chem.. Phys., 127 (2007) 244703.

    Article  ADS  Google Scholar 

  66. Campione M., Sassella A., Moret M., Marcon V. and Raos G., J. Phys. Chem. B, 109 (2005) 7859.

    Article  Google Scholar 

  67. Sassella A., Besana D., Borghesi A., Campione M., Tavazzi S., Loτz B. and Thierry A., Synth. Met., 138 (2003) 125.

    Article  Google Scholar 

  68. Holmes D., Kumaraswamy S., Matzger A. J. and Vollhardt K. P. C., Chem. Eur. J., 5 (1999) 3399.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sassella, A., Campione, M. & Borghesi, A. Organic epitaxy. Riv. Nuovo Cim. 31, 457–490 (2008). https://doi.org/10.1393/ncr/i2008-10035-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2008-10035-y

Keywords

Navigation