Log in

Effects of cadmium administration on the endogenous metal balance in rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The concentrations of cadmium and other metal ions in selected organs, urine, and blood of female rats were measured after exposure to cadmium chloride through their diet or by oral or intravenous administration. The hematological and urinary variations were followed for 4 wk.

Body weight gain and the weights of livers and kidneys from all treated groups were not significantly different from the controls. No gross morphological changes were observed in any of the tissues studied at necropsy.

The accumulation of cadmium occurred in the liver and kidney. The zinc levels in these organs were elevated relative to controls, in all treated groups regardless of dose and exposure route. Copper was elevated in the liver, kidney, bone, and blood of animals subject to intravenous administration of cadmium. Hepatic iron was decreased in the dietary and orally treated groups, but was not affected in the intravenous study group. The level of magnesium in kidney was increased for all exposure routes, but that of liver was increased only in the intravenously injected groups. The changes in the concentrations of sodium, potassium, calcium, and phosphorus did not follow a specific pattern and varied from organ to organ, depending on the exposure route.

The discussion includes a relationship between tissue injury and the alteration of tissue essential element concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization, Cadmium, Environ. Health Criteria 134, 67–130 (1992).

    Google Scholar 

  2. H. Andersson, K. Petersson-Grawe, E. Lindqvist, J. Luthman, A. Oskarsson, and L. Olson, Low-level cadmium exposure of lactating rats causes alterations in brain serotonin levels in the offspring, Neurotoxicol. Teratol. 19, 105–115 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. M. Webb, Cadmium, Br. Med. Bull. 31, 246–250 (1975).

    PubMed  CAS  Google Scholar 

  4. M. Abdulla and J. Chmielnicka, New aspects on the distribution and metabolism of essential trace elements after dietary exposure to toxic metals, Biol. Trace Element Res. 23, 25–53 (1990).

    CAS  Google Scholar 

  5. L. Thijs, J. Staessen, A. Amery, P. Bruaux, J. P. Buchet, F. Claeys, et al., Determination of serum zinc in a random population sample of four Belgian towns with different degrees of environmental exposure to cadmium, Environ. Health Perspect. 98, 251–258 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. S. Telisman, Interactions of essential and/or toxic metals and metalloids regarding interindividual differences in susceptibility to various toxicants and chronic diseases in man, Arh. Hig. Rada. Toksikol. 46, 459–476 1995.

    PubMed  CAS  Google Scholar 

  7. S. C. Gad and C. S. Wei, Statistics for toxicologists, in Principles and Methods of Toxicology, 3rd ed., A. W. Hayes, ed., Raven, New York, pp. 221–274 (1994).

    Google Scholar 

  8. S. A. Gunn and T. C. Gould, Selective accumulation of 115Cd by cortex of rat kidney, Proc. Soc. Exp. Biol. Med. 96, 820–823 (1957).

    PubMed  CAS  Google Scholar 

  9. L. Friberg, G. F. Nordberg, and V. D. Vouk (eds.), Handbook on the Toxicology of Metals, Elsevier/North-Holland Biomedical, Amsterdam (1986).

    Google Scholar 

  10. N. Sugawara, Influence of cadmium on zinc distribution in the mouse liver and kidney: role of metallothionein, Toxicol. Appl. Pharmcol. 42, 377–386 (1977).

    Article  CAS  Google Scholar 

  11. S. Hirano, N. Tsukamoto, E. Kobayashi, and K. T. Suzuki, Toxicity of cadmium oxide instilled into rat lung. I. Metabolism of cadmium oxide in the lung and its effects on essential elements, Toxicology 55, 15–24 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. H. J. Weigel, H. J. Jager, and I. Elmadfa, Cadmium accumulation in rat organs after extended oral administration with low concentrations of cadmium oxide, Arch. Environ. Contam. Toxicol. 13, 279–287 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. M. D. Stonard and M. Webb, Influence of dietary cadmium on the distribution of the essential metals copper, zinc and iron in tissues of the rat, Chem.-Biol. Interact. 15, 349–363 (1976).

    Article  PubMed  CAS  Google Scholar 

  14. W. Moore, Jr., J. F. Stara, W. C. Crocker, M. Malanchuk, and R. Iltis, Comparison of 115mcadmium retention in rats following different routes of administration, Environ. Res. 6, 819–829 (1973).

    Google Scholar 

  15. C. F. Decker, R. U. Byerrum, and C. A. Hoppert, A study of the distribution and retention of Cd-115 in the albino rat, Arch. Biochem. Biophys. 66, 140–145 (1957).

    Article  PubMed  CAS  Google Scholar 

  16. F. N. Kotsonis and C. D. Klaassen, Toxicity and distribution of cadmium administered to rats at sublethal doses, Toxicol. Appl. Pharmcol. 41, 667–680 (1977).

    Article  CAS  Google Scholar 

  17. Y. Lind, J. Engman, L. Jorhem, and A. W. Glynn, Cadmium accumulation in liver and kidney of mice exposed to the same weekly cadmium dose continuously or once a week, Fundam. Chem. Toxicol. 35, 891–895 (1997).

    Article  CAS  Google Scholar 

  18. K. Nomiyama, Y. Sugata, H. Nomiyama, and A. Yamamoto, Dose-response relationship for cadmium, in Effects and Dose-Response Relationships of Toxic Metals, G. F. Nordberg, ed., Elsevier Science, Amsterdam, pp. 380–385 (1976).

    Google Scholar 

  19. B. Elsenhaus, K. Kolb, K. Schumann, and W. Forth, The longitudal-distribution of cadmium, zinc, copper, iron, and metallothionein in the small-intestinal mucosa of rats after administration of cadmium chloride, Biol. Trace Element Res. 41, 31–46 (1994).

    Article  Google Scholar 

  20. B. D. Whelton, D. P. Peterson, E. S. Moretti, R. W. Mauser, and M. H. Bhattacharyys, Hepatic levels of cadmium, zinc and copper in multiparous, nulliparous and ovariectomized mice fed either a nutrient-sufficient or -deficient diet containing cadmium, Toxicology 119, 141–153 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. D. Bhattacharjee, T. K. Shetty, and K. Sandaram, Studies on the distribution of 115mCd in mice tissue, Ind. J. Exp. Biol. 7, 74–76 (1979).

    Google Scholar 

  22. K. L. Wong, R. Chachia, and D. C. Klaassen, Comparison of the toxicity and tissue distribution of cadmium in new born and adult rats after repeated administration, Toxicol. Appl. Pharmacol. 56, 317–325 (1980).

    Article  PubMed  CAS  Google Scholar 

  23. R. E. Dudley, L. M. Gammal, and C. D. Klaassen, Cadmium-induced hepatic and renal injury in chronically exposed rats: likely role of hepatic cadmium-metallothionein in nephrotoxicity, Toxicol. Appl. Pharmacol. 77, 414–426 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. A. V. Colucci, D. Winge, and M. D. Kranso, Cadmium accumulation in rat liver, Arch. Environ. Health. 30, 153–157 (1975).

    PubMed  CAS  Google Scholar 

  25. K. Kawai, K. Fukada, and M. Kimura, Morphological alterations in ezperimental cadmium exposure with special reference to the onset of renal lesion, in Effects and Dose-Response Relationships of Toxic Metals, G. F. Nordberg, ed., Elsevier, Amsterdam, pp. 343–370 (1976).

    Google Scholar 

  26. J. A. Bonnell, J. H. Ross, and E. King, Renal lesions in experimental cadmium poisoning, Br. J. Ind. Med. 17, 69–80 (1960).

    PubMed  CAS  Google Scholar 

  27. F. W. Bonner, L. J. King, and D. V. Parke, The tissue distribution and urinary excretion of cadmium, zinc, copper and iron, following repeated parenteral administration of cadmium to rats, Chem.-Biol. Interact. 27, 343–351 (1979).

    Article  PubMed  CAS  Google Scholar 

  28. L. Friberg, M. Piscator, G. F. Nordberg, and T. Kjellstrom, Cadmium in the Environment, 2nd ed. CRC, Cleveland, OH (1974).

    Google Scholar 

  29. R. Swiergrosz, M. Zakrezewska, K. Sawicka-Kapusta, K. Bacia, and I. Janowska, Accumulation of cadmium in and its effect on bank vole tissues after chronic exposure, Ectoxicol. Environ. Safety 41, 130–136 (1998).

    Article  Google Scholar 

  30. O. Wada, A. Miyahara, S. Manabe, H. Matsui, and T. Ono. Effect of acute administration of cadmium on distribution of zinc in the hamster, J. Toxicol. Environ. Health 9, 509–513 (1982).

    PubMed  CAS  Google Scholar 

  31. M. Torra, J. To-Figueras, M. Rodamilans, M. Brunet, and J. Corbella, Cadmium and zinc relationships in the liver and kidney of humans exposed to environmental cadmium, Sci. Total Environ. 170, 53–57 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. R. Honda and K. Nogawa, Cadmium, zinc and copper relationships in kidneys and liver of humans exposed to environmental cadmium, Arch. Toxicol. 59, 437–442 (1987).

    Article  PubMed  CAS  Google Scholar 

  33. R. Nimoyama, N. Koizumi, and T. Tsukamoto, Change of metal distribution in organs of cadmium-administration and copper-deficient rats, Jpn. J. Hyg. 48, 920–931 (1993) (in Japanese).

    Google Scholar 

  34. T. Maitani and K. T. Suzuki, Essential metal contents and metallothionein-like protein in testis of mice after cadmium administration, Toxicology 40, 1–12 (1986).

    Article  PubMed  CAS  Google Scholar 

  35. C. V. Nolan and Z. A. Shaikh, Determination of metallothionein in tissues by radioimmunoassay and by cadmium saturation method, Anal. Biochem. 154, 213–223 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. H. E. Heilmaier, G. A. Drasch, E. Kretscmer, and K. H. Summer, Metallothionein, cadmium, copper and zinc levels of human and rat tissues, Toxicol. Lett. 38, 205–211 (1987).

    Article  PubMed  CAS  Google Scholar 

  37. M. Webb and R. D. Verschoyle, An investigation of the role of metallo-thioneins in protection against the acute toxicity of cadmium ion, Biochem. Pharmacol. 25, 673–679 (1976).

    Article  PubMed  CAS  Google Scholar 

  38. F. W. Bonner, L. J. King, and D. V. Parke, The effect of dietary cadmium on zinc, copper and iron levels in the bone of rats, Toxicol. Lett. 5, 105–108 (1980).

    Article  PubMed  CAS  Google Scholar 

  39. H. Yoshikawa, Accumulation of cadmium organs of mice by a long-term injection of cadmium and interactives of cadmium with copper, manganese and zinc already present in the animals, Jpn. J. Ind. Health 21, 171–177 (1979) (in Japanese).

    CAS  Google Scholar 

  40. K. Nomiyama and H. Nomiyama, Modified trace element metabolism in cadmium-induced renal dysfunctions, Acta Pharmacol. Toxicol. (Copenh.) 59, 427–430 (1986).

    CAS  Google Scholar 

  41. S. L. Ashby, L. J. King, and D. V. W. Parke, Effect of acute administration of cadmium on the disposition of copper, zinc and iron in the rat, Environ. Res. 21, 177–185 (1980).

    Article  PubMed  CAS  Google Scholar 

  42. Y. Suzuki, Cadmium, copper, and zinc distribution in blood of rat after long-term cadmium administration, J. Toxicol. Environ. Health 7, 215–262 (1981).

    Google Scholar 

  43. K. T. Suzuki, K. Yaguchi, R. Ohnuki, M. Nishikawa, and Y. K. Yamada, Extent of cadmium accumulation and its effect on essential metals in liver, kidney and body fluid, J. Toxicol. Environ. Health 11, 713–726 (1983).

    Article  PubMed  CAS  Google Scholar 

  44. K. Nogawa, R. Honda, Y. Yamada, T. Kido, I. Tsuritani, and M. Ishizaki, Iron concentrations in liver and kidney of cadmium-exposed human subjects, Toxicol. Lett. 21, 209–212 (1984).

    Article  PubMed  CAS  Google Scholar 

  45. S. Kawano, T. Omura, H. Nakagawa, H. Toga, M. Nishi, and Y. Matsuo, Relationship between renal tubular damage and urinary excretion of heavy metals, Kankyo Hoken Report 46, 248–255. (1980) (in Japanese).

    Google Scholar 

  46. R. H. Wilson, F. De Eds, and A. J. Cox, Jr., Effects of continued cadmium feeding, J. Pharmacol. Exp. Ther. 71, 222–235 (1941).

    CAS  Google Scholar 

  47. L. Friberg, Health hazards in the manufacture of alkaline accumulators with special reference to chronic cadmium poisoning, Acta Med. Scand. 130(Suppl. 240), 1–124 (1950).

    Google Scholar 

  48. L. Friberg, Iron and liver administration in chronic cadmium poisoning and studies on the distribution and excretion of cadmium. Experimental investigations in rabbits, Acta Pharmacol. 11, 168–178 (1955).

    CAS  Google Scholar 

  49. N. Sugawara, C. Sugawara, and H. Miyake, Effect of subcutaneous and oral cadmium on iron metabolism: role of ceruloplasmin and metallothionein, Arch. Toxicol. 56, 25–28 (1984).

    Article  PubMed  CAS  Google Scholar 

  50. E. Prigge, Early signs of oral and inhalative cadmium uptake in rats, Arch. Toxicol. 40, 231–247 (1978).

    Article  PubMed  CAS  Google Scholar 

  51. E. Prigge, H. P. Baumert, and H. Muhle, Effects of dietary and inhalative cadmium on haemoglobin and haemocrit in rats, Bull. Environ. Contam. Toxicol. 17, 585–590 (1977).

    Article  PubMed  CAS  Google Scholar 

  52. M. Berlin and L. Friberg, Bone marrow activity and erythrocyte destruction in chronic cadmium poisoning, Arch. Environ. Health 1, 478–486 (1960).

    CAS  Google Scholar 

  53. B. Axelsson and M. Piscator, Serum proteins in cadmium-poisoned rabbits with special reference to haemolytic anaemia, Arch. Environ. Health 12, 374–381 (1966).

    PubMed  CAS  Google Scholar 

  54. K. Zierold, Effects of cadmium on electrolyte ions in cultured rat hepatocytes studied by X-ray microanalysis of cryosections, Toxicol. Appl. Pharmacol. 144, 70–76 (1997).

    Article  PubMed  CAS  Google Scholar 

  55. S. K. El-Mofty, M. C. Scrutton, C. Nicolini, and J. L. Farber, Early, responsible plasma membrane injury in galactosamine-induced liver cell death, Am. J. Pathol. 79, 579 (1975).

    PubMed  CAS  Google Scholar 

  56. R. J. Ingersell and R. H. Wassermann, Vitamin D3-induced calcium-binding protein, J. Biol. Chem. 246, 2802–2814 (1971).

    Google Scholar 

  57. N. Sugawara, Inhibitory effect of cadmium on calcium absorption from rat duodenum, Arch. Environ. Contam. Toxicol. 5, 167–175 (1977).

    Article  PubMed  CAS  Google Scholar 

  58. M. Ando, Y. Sayato, M. Tonomura, and T. Osawa, Studies on excretion and uptake of cadmium by rats after continuous oral administration of cadmium, Toxicol. Appl. Pharmacol. 39, 321–327 (1977).

    Article  PubMed  CAS  Google Scholar 

  59. P. Massanyi, R. Toman, M. Valent, and O. Jones, Serum mineral profile of rabbits after an experimental administration of cadmium, J. Environ. Sci. Health A30, 2221–2227 (1995).

    Article  CAS  Google Scholar 

  60. Z. Z. Wahba and M. P. Waalkes, Cadmium-induced route-specific alterations in essential trace element homeostasis, Toxicol. Lett. 54, 77–81 (1990).

    Article  PubMed  CAS  Google Scholar 

  61. K. Tuchiya, Y. Seki, and M. Sugita, Cadmium concentrations in the organs and tissues of cadavers from accidental deaths, Keio J. Med. 25, 83–90 (1976).

    Google Scholar 

  62. M. Yoshimura, S. Sugiyama, S. Doi, H. Noda, M. Yamaguchi, and S. Tatsumi, Secular changes of cadmium concentration accumulated in organs of Japanese from 1976 to 1986, Rep. Environ. Sci. Inst. Kinki Univ. 17, 211–214 (1989) (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshi, S., Nakagawa, Ji. & Ando, M. Effects of cadmium administration on the endogenous metal balance in rats. Biol Trace Elem Res 76, 257–278 (2000). https://doi.org/10.1385/BTER:76:3:256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:76:3:256

Index Entries

Navigation