Log in

A Novel Assessment of Metabolic Pathways in Peritoneal Metastases from Low-Grade Appendiceal Mucinous Neoplasms

  • Peritoneal Surface Malignancy
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

There is a paucity of targeted therapies for patients with pseudomyxoma peritonei (PMP) secondary to low-grade appendiceal mucinous neoplasms (LAMNs). Dysregulated metabolism has emerged as a hallmark of cancer, and the relationship of metabolomics and cancer is an area of active scientific exploration. We sought to characterize phenotypic differences found in peritoneal metastases (PM) derived from LAMN versus adenocarcinoma.

Methods

Tumors were washed with phosphate-buffered saline (PBS), microdissected, then dissociated in ice-cold methanol dried and reconstituted in pyridine. Samples were derivatized in tert-butyldimethylsilyl (TBDMS) and subjected to gas chromatography-coupled mass spectrometry. Metabolites were assessed based on a standard library. RNA sequencing was performed, with pathway and network analyses on differentially expressed genes.

Results

Eight peritoneal tumor samples were obtained and analyzed: LAMNs (4), and moderate to poorly differentiated adenocarcinoma (colon [1], appendix [3]). Decreases in pyroglutamate, fumarate, and cysteine in PM from LAMNs were found compared with adenocarcinoma. Analyses showed the differential gene expression was dominated by the prevalence of metabolic pathways, particularly lipid metabolism. The gene retinol saturase (RETSAT), downregulated by LAMN, was involved in the multiple metabolic pathways that involve lipids. Using network map**, we found IL1B signaling to be a potential top-level modulation candidate.

Conclusions

Distinct metabolic signatures may exist for PM from LAMN versus adenocarcinoma. A multitude of genes are differentially regulated, many of which are involved in metabolic pathways. Additional research is needed to identify the significance and applicability of targeting metabolic pathways in the potential development of novel therapeutics for these challenging tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Franko J, Shi Q, Goldman CD, et al. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: a pooled analysis of north central cancer treatment group phase III trials N9741 and N9841. J Clin Oncol. 2012;30(3):263–7.

    Article  PubMed  Google Scholar 

  2. Chakraborty A, Selby D, Gardiner K, Myers J, Moravan V, Wright F. Malignant bowel obstruction: natural history of a heterogeneous patient population followed prospectively over two years. J Pain Symptom Manage. 2011;41(2):412–20.

    Article  PubMed  Google Scholar 

  3. van Driel WJ, Koole SN, Sikorska K, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018;378(3):230–40.

    Article  PubMed  Google Scholar 

  4. Quenet F, Elias D, Roca L, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(2):256–66.

    Article  CAS  PubMed  Google Scholar 

  5. Chua TC, Moran BJ, Sugarbaker PH, et al. Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Clin Oncol. 2012;30(20):2449–56.

    Article  PubMed  Google Scholar 

  6. Baratti D, Kusamura S, Nonaka D, et al. Pseudomyxoma peritonei: clinical pathological and biological prognostic factors in patients treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC). Ann Surg Oncol. 2008;15(2):526–34.

    Article  PubMed  Google Scholar 

  7. Shapiro JF, Chase JL, Wolff RA, et al. Modern systemic chemotherapy in surgically unresectable neoplasms of appendiceal origin: a single-institution experience. Cancer. 2010;116(2):316–22.

    Article  PubMed  Google Scholar 

  8. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  9. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  10. Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res. 2009;15(21):6479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10(9):671–84.

    Article  CAS  PubMed  Google Scholar 

  12. Martinez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–80.

    Article  CAS  PubMed  Google Scholar 

  13. Hanse EA, Kong M. A happy cell stays home: when metabolic stress creates epigenetic advantages in the tumor microenvironment. Front Oncol. 2022;12:962928.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mo Y, Leung LL, Mak CSL, et al. Tumor-secreted exosomal miR-141 activates tumor-stroma interactions and controls premetastatic niche formation in ovarian cancer metastasis. Mol Cancer. 2023;22(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mukherjee A, Chiang CY, Daifotis HA, et al. Adipocyte-induced FABP4 expression in ovarian cancer cells promotes metastasis and mediates carboplatin resistance. Cancer Res. 2020;80(8):1748–61.

    Article  CAS  PubMed  Google Scholar 

  16. Yang Q, Bae G, Nadiradze G, et al. Acidic ascites inhibits ovarian cancer cell proliferation and correlates with the metabolomic, lipidomic and inflammatory phenotype of human patients. J Transl Med. 2022;20(1):581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garcia A, Barbas C. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Methods Mol Biol. 2011;708:191–204.

    Article  CAS  PubMed  Google Scholar 

  18. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  20. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.

    Article  CAS  PubMed  Google Scholar 

  21. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wellner VP, Sekura R, Meister A, Larsson A. Glutathione synthetase deficiency, an inborn error of metabolism involving the gamma-glutamyl cycle in patients with 5-oxoprolinuria (pyroglutamic aciduria). Proc Natl Acad Sci U S A. 1974;71(6):2505–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gamarra Y, Santiago FC, Molina-Lopez J, et al. Pyroglutamic acidosis by glutathione regeneration blockage in critical patients with septic shock. Crit Care. 2019;23(1):162.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830(5):3143–53.

    Article  CAS  PubMed  Google Scholar 

  27. Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 2018;217(7):2291–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14(1):11–31.

    Article  CAS  PubMed  Google Scholar 

  29. Liberti MV, Locasale JW. The warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Natsume M, Shimura T, Iwasaki H, et al. Omental adipocytes promote peritoneal metastasis of gastric cancer through the CXCL2-VEGFA axis. Br J Cancer. 2020;123(3):459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lesterhuis WJ, Bosco A, Millward MJ, Small M, Nowak AK, Lake RA. Dynamic versus static biomarkers in cancer immune checkpoint blockade: unravelling complexity. Nat Rev Drug Discov. 2017;16(4):264–72.

    Article  CAS  PubMed  Google Scholar 

  32. Wang R, Song S, Harada K, et al. Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut. 2020;69(1):18–31.

    Article  CAS  PubMed  Google Scholar 

  33. Pan G, Ma Y, Suo J, et al. Discovering biomarkers in peritoneal metastasis of gastric cancer by metabolomics. Onco Targets Ther. 2020;13:7199–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ortega AL, Mena S, Estrela JM. Glutathione in cancer cell death. Cancers (Basel). 2011;3(1):1285–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang X, He Y, Shen Q, et al. RETSAT mutation selected for hypoxia adaptation inhibits tumor growth. Front Cell Dev Biol. 2021;9:744992.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tu Q, Liu X, Yao X, et al. RETSAT associates with DDX39B to promote fork restarting and resistance to gemcitabine based chemotherapy in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res. 2022;41(1):274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lagathu C, Yvan-Charvet L, Bastard JP, et al. Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia. 2006;49(9):2162–73.

    Article  CAS  PubMed  Google Scholar 

  38. Andersen V, Holst R, Kopp TI, Tjonneland A, Vogel U. Interactions between diet, lifestyle and IL10, IL1B, and PTGS2/COX-2 gene polymorphisms in relation to risk of colorectal cancer in a prospective Danish case-cohort study. PLoS One. 2013;8(10):e78366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gelfo V, Rodia MT, Pucci M, et al. A module of inflammatory cytokines defines resistance of colorectal cancer to EGFR inhibitors. Oncotarget. 2016;7(44):72167–83.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH RO1GM132142 and R01CA244360 (MK).

Author information

Authors and Affiliations

Authors

Contributions

EAH, OSE, and MK conceived the project. MK and OSE supervised the project. EAH conducted all experiments and analyzed the data, and EAH and OE wrote the manuscript. TW provided technical assistance with the metabolomic experiments and technical assistance with RNASeq data. DT provided tumor samples, and MS and ACK provided valuable clinical advice.

Corresponding author

Correspondence to Oliver S. Eng MD.

Ethics declarations

Disclosures

Eric A. Hanse, Tianhong Wang, Delia Tifrea, Maheswari Senthil, Alex C. Kim, Mei Kong, and Oliver S. Eng have no relevant financial disclosures to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanse, E.A., Wang, T., Tifrea, D. et al. A Novel Assessment of Metabolic Pathways in Peritoneal Metastases from Low-Grade Appendiceal Mucinous Neoplasms. Ann Surg Oncol 30, 5132–5141 (2023). https://doi.org/10.1245/s10434-023-13587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-023-13587-0

Navigation