Log in

A Multiomics Signature Highlights Alterations Underlying Homologous Recombination Deficiency in Triple-Negative Breast Cancer

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Homologous recombination (HR) is a key pathway in DNA double-strand damage repair. HR deficiency (HRD) occurs more commonly in triple-negative breast cancers (TNBCs) than in other breast cancer subtypes. Several clinical trials have demonstrated the value of HRD in stratifying breast cancer patients into distinct groups based on their responses to poly(ADP ribose) polymerase inhibitors and chemotherapy.

Methods

We retrospectively collected TNBC samples to establish a multiomics cohort (n = 343) and explored the biological and phenotypic mechanisms underlying the better prognosis of patients with high HRD scores. Gene set enrichment analysis was conducted to elucidate the underlying pathways in patients with low HRD scores, and a radiomics model was established to predict the HRD score via a noninvasive method.

Results

Multivariable Cox analysis revealed the independent prognostic value of a low HRD score (hazard ratio 2.20, 95% confidence interval 1.05–4.59; p = 0.04). Furthermore, amino acid and lipid metabolism pathways were highly enriched in tumors from patients with low HRD scores, which was also demonstrated by differential abundant metabolite analysis. A noninvasive radiomics method was developed to predict the HRD status and it performed well in the independent validation cohort (support vector machine model: area under the curve [AUC] 0.739, sensitivity 0.571, and specificity 0.824; logistic regression model: AUC 0.695, sensitivity 0.571, and specificity 0.882).

Conclusions

We revealed the prognostic value of the HRD score, predicted the HRD status with noninvasive radiomics features, and preliminarily explored druggable targets for TNBC patients with low HRD scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300.

    Article  CAS  PubMed  Google Scholar 

  2. Criscitiello C, Azim HA Jr, Schouten PC, Linn SC, Sotiriou C. Understanding the biology of triple-negative breast cancer. Ann Oncol. 2012;23(6):vi13-18.

    Article  PubMed  Google Scholar 

  3. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet. 2017;389(10087):2430–42.

    Article  CAS  PubMed  Google Scholar 

  4. Metzger-Filho O, Tutt A, de Azambuja E, et al. Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol. 2012;30(15):1879–87.

    Article  CAS  PubMed  Google Scholar 

  5. Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burstein MD, Tsimelzon A, Poage GM, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–98.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang YZ, Ma D, Suo C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell. 2019;35(3):428-440 e425.

    Article  CAS  PubMed  Google Scholar 

  8. Belli C, Duso BA, Ferraro E, Curigliano G. Homologous recombination deficiency in triple negative breast cancer. Breast. 2019;45:15–21.

    Article  PubMed  Google Scholar 

  9. Brown JS, O’Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 2017;7(1):20–37.

    Article  CAS  PubMed  Google Scholar 

  10. Yang H, Jeffrey PD, Miller J, et al. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. 2002;297(5588):1837–48.

    Article  CAS  PubMed  Google Scholar 

  11. Pellegrini L, Yu DS, Lo T, et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature. 2002;420(6913):287–93.

    Article  CAS  PubMed  Google Scholar 

  12. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ashworth A, Lord CJ. Synthetic lethal therapies for cancer: What’s next after PARP inhibitors? Nat Rev Clin Oncol. 2018;15(9):564–76.

    Article  CAS  PubMed  Google Scholar 

  14. Timms KM, Abkevich V, Hughes E, et al. Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res. 2014;16(6):475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Abkevich V, Timms KM, Hennessy BT, et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer. 2012;107(10):1776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Birkbak NJ, Wang ZC, Kim JY, et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2012;2(4):366–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Popova T, Manié E, Rieunier G, et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 2012;72(21):5454–62.

    Article  CAS  PubMed  Google Scholar 

  18. Telli ML, Timms KM, Reid J, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22(15):3764–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  PubMed Central  CAS  Google Scholar 

  20. Shah SP, Roth A, Goya R, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9.

    Article  CAS  PubMed  Google Scholar 

  21. Foulkes WD, Stefansson IM, Chappuis PO, et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst. 2003;95(19):1482–5.

    Article  CAS  PubMed  Google Scholar 

  22. **ao Y, Ma D, Yang YS, Yang F, Ding JH, Gong Y, Jiang L, Ge LP, Wu SY, Yu Q, Zhang Q, Bertucci F, Sun Q, Hu X, Li DQ, Shao ZM, Jiang YZ. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res. 2022;32(5):477-490. https://doi.org/10.1038/s41422-022-00614-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang YZ, Ma D, Suo C, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell. 2019;35(3):428-440.e425.

    Article  CAS  PubMed  Google Scholar 

  24. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  27. **ao Y, Ma D, Zhao S, et al. Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer. Clin Cancer Res. 2019;25(16):5002–14.

    Article  CAS  PubMed  Google Scholar 

  28. Tutt A, Ashworth A. The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol Med. 2002;8(12):571–6.

    Article  CAS  PubMed  Google Scholar 

  29. Sharma P, Barlow WE, Godwin AK, et al. Impact of homologous recombination deficiency biomarkers on outcomes in patients with triple-negative breast cancer treated with adjuvant doxorubicin and cyclophosphamide (SWOG S9313). Ann Oncol. 2018;29(3):654–60.

    Article  CAS  PubMed  Google Scholar 

  30. Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics. J Nucl Med. 2020;61(4):488–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Z, Wang S, Dong D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics. 2019;9(5):1303–22.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures. Data Radiol. 2016;278(2):563–77.

    Article  Google Scholar 

  33. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Z, Meng X, Zhang H, et al. Predicting distant metastasis and chemotherapy benefit in locally advanced rectal cancer. Nat Commun. 2020;11(1):4308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Huang YQ, Liang CH, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol. 2016;34(18):2157–64.

    Article  PubMed  Google Scholar 

  36. Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19(9):1180–91.

    Article  CAS  PubMed  Google Scholar 

  37. Trebeschi S, Drago SG, Birkbak NJ, et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann Oncol. 2019;30(6):998–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.

    Article  CAS  PubMed  Google Scholar 

  39. Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33.

    Article  CAS  PubMed  Google Scholar 

  40. Tutt ANJ, Garber JE, Kaufman B, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 2021;384(25):2394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Minckwitz GV, Timms K, Untch M, et al. Prediction of pathological complete response (pCR) by homologous recombination deficiency (HRD) after carboplatin-containing neoadjuvant chemotherapy in patients with TNBC: results from GeparSixto. J Clin Oncol. 2015;33(15 Suppl):1004.

    Article  Google Scholar 

  42. Tutt A, Tovey H, Cheang MCU, et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med. 2018;24(5):628–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang YZ, Liu Y, ** and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: the future trial. Cell Res. 2021;31(2):178–86.

    Article  CAS  PubMed  Google Scholar 

  44. Gong Y, Ji P, Yang YS, et al. Metabolic-pathway-based subty** of triple-negative breast cancer reveals potential therapeutic targets. Cell Metab. 2021;33(1):51-64.e9.

    Article  CAS  PubMed  Google Scholar 

  45. **ao Y, Ma D, Yang YS, et al. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res. 2022;32(5):477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of the Radiology Department of Fudan University Shanghai Cancer Center for their assistance with the breast MRI collection. In addition, they thank the staff of the Institute of Science and Technology for Brain-Inspired Intelligence of Fudan University for their contribution to radiomics feature extraction.

Funding

This project was supported by grants from the National Natural Science Foundation of China (81901703, 82071878, 91959207 and 92159301), Cancer Research Program of National Cancer Center (NCC201909B06), Youth Medical Talents-Clinical Imaging Practitioner Program [SHWRS(2020)_087] and Clinical Research Plan of SHDC (SHDC2020CR2008A).

Author information

Authors and Affiliations

Authors

Contributions

All authors fundamentally contributed to this study, participated sufficiently, and take public responsibility for the content. CY designed the study; CY and GHS performed the literature review; and Guan-Hua Su drafted the manuscript. CY, GHS and LJ collected the data. CY and GHS were responsible for quality control and interpretation of the data. LJ and GHS were involved in the statistical analysis and interpreted the results. RCZ and HW were involved in the MR radiomics extraction. CY, GHS, YX and YZJ interpreted the results and edited the manuscript. WJP and ZMS edited the manuscript. CY and YJG edited and finalized the manuscript. The publication was approved by all authors.

Corresponding authors

Correspondence to Ya-Jia Gu MD or Chao You MD.

Ethics declarations

Conflict of interest

Guan-Hua Su, Lin Jiang, Yi **ao, Ren-Cheng Zheng, He Wang, Yi-Zhou Jiang, Wei-Jun Peng, Zhi-Ming Shao, Ya-Jia Gu, and Chao You declare no competing financial or nonfinancial interests.

Availability of data and materials

The accession number for raw LC-MS data, microarray data and sequence data reported in this paper is NODE: OEP000155. All data can be viewed in The National Omics Data Encyclopedia (NODE) (http://www.biosino.org/node) by pasting the accession (OEP000155) into the text search box or through the URL: http://www.biosino.org/node/project/detail/OEP000155.

Ethics approval and consent to participate

The Institutional Review Board approved this study.

Consent for publication

Written informed consent was obtained from all subjects (patients) in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1047 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, GH., Jiang, L., **ao, Y. et al. A Multiomics Signature Highlights Alterations Underlying Homologous Recombination Deficiency in Triple-Negative Breast Cancer. Ann Surg Oncol 29, 7165–7175 (2022). https://doi.org/10.1245/s10434-022-11958-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-022-11958-7

Navigation