Log in

Fluconazole-Loaded Ibuprofen In Situ Gel-Based Oral Spray for Oropharyngeal Candidiasis Treatment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Oral candidiasis is a fungal infection affecting the oral mucous membrane, and this research specifically addresses on a localized treatment through fluconazole-loaded ibuprofen in situ gel-based oral spray. The low solubility of ibuprofen is advantageous for forming a gel when exposed to an aqueous phase. The 1% w/w fluconazole-loaded in situ gel oral sprays were developed utilizing various concentrations of ibuprofen in N-methyl pyrrolidone. The prepared solutions underwent evaluation for viscosity, surface tension, contact angle, water tolerance, gel formation, interface interaction, drug permeation, and antimicrobial studies. The higher amount of ibuprofen reduced the surface tension and retarded solvent exchange. The use of 50% ibuprofen as a gelling agent demonstrated prolonged drug permeation for up to 24 h. The incorporation of Cremophor EL in the formulations resulted in increased drug permeation and exhibited effective inhibition against Candida albicans, Candida krusei, Candida lusitaniae, and Candida tropicalis. While the Cremophor EL-loaded formulation did not exhibit enhanced antifungal effects on agar media, its ability to facilitate the permeation of fluconazole and ibuprofen suggested potential efficacy in countering Candida invasion in the oral mucosa. Moreover, these formulations demonstrated significant thermal inhibition of protein denaturation in egg albumin, indicating anti-inflammatory properties. Consequently, the fluconazole-loaded ibuprofen in situ gel-based oral spray presents itself as a promising dosage form for oropharyngeal candidiasis treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data presented in this study are available on the request from the corresponding author.

References

  1. Epstein JB, Polsky B. Oropharyngeal candidiasis: a review of its clinical spectrum and current therapies. Clin Ther. 1998;20:40–57. https://doi.org/10.1016/s0149-2918(98)80033-7.

    Article  CAS  PubMed  Google Scholar 

  2. Sivannana S, Vishnuvardhana A, Elumalaib K, Srinivasanc S, Cherianb BV, Ramanujamd SK, et al. Azithromycin and co-trimoxazole-induced oral thrush: a case report from the perspective of pharmacy. Intell Pharm. 2023;1(4):280–2. https://doi.org/10.1016/j.ipha.2023.06.007.

    Article  Google Scholar 

  3. Pisano M, Romano A, Di Palo MP, Baroni A, Serpico R, Contaldo M. Oral candidiasis in adult and pediatric patients with COVID-19. Biomedicines. 2023;11:846. https://doi.org/10.3390/biomedicines11030846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karajacob AS, Azizan NB, Al-Maleki AR, Goh JP, Loke MF, Khor HM, et al. Candida species and oral mycobiota of patients clinically diagnosed with oral thrush. PLoS ONE. 2023;18(4):e0284043. https://doi.org/10.1371/journal.pone.0284043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fang J, Huang B, Ding Z. Efficacy of antifungal drugs in the treatment of oral candidiasis: a Bayesian network meta-analysis. J Prosthet Dent. 2021;125(2):257–65. https://doi.org/10.1016/j.prosdent.2019.12.025.

    Article  CAS  PubMed  Google Scholar 

  6. Lucatorto FM, Franker C, Hardy D, Chafey S, Calif LA. Treatment of refractory oral candidiasis with fluconazole. Oral Surg Oral Med Oral Pathol. 1991;71:42–4. https://doi.org/10.1016/0030-4220(91)90518-h.

    Article  CAS  PubMed  Google Scholar 

  7. Elias R, Basu P, Fridman M. Fluconazole-COX inhibitor hybrids: a dual-acting class of antifungal azoles. J Med Chem. 2022;65:2361–73. https://doi.org/10.1021/acs.jmedchem.1c01807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yücesoy M, Öktem IMA, Gülay Z. In-vitro synergistic effect of fluconazole with nonsteroidal anti-inflammatory agents against Candida albicans strains. J Chemother. 2000;12(5):385–9. https://doi.org/10.1179/joc.2000.12.5.385.

    Article  PubMed  Google Scholar 

  9. Scott EM, Tariq VN, Mccrory RM. Demonstration of synergy with fluconazole and either ibuprofen, sodium salicylate, or propylparaben against Candida albicans In Vitro. Antimicrob Agents Chemother. 1995;39(12):261–2614. https://doi.org/10.1128/AAC.39.12.2610.

    Article  Google Scholar 

  10. Costa-de-Oliveira S, Miranda IM, Silva-Dias A, Silva AP, Rodrigues AG, Pina-Vaz C. Ibuprofen potentiates the in vivo antifungal activity of fluconazole against Candida albicans murine infection. Antimicrob Agents Chemother. 2015;59:4289–92. https://doi.org/10.1128/AAC.05056-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mohamed SP, Muzzammil S, Pramod KT. Preparation of fluconazole buccal tablet and influence of formulation expedients on its properties. Yao Xue Xue Bao. 2011;46(4):460–5.

    CAS  PubMed  Google Scholar 

  12. Tejada G, Calvo NL, Morri M, Sortino M, Lamas C, Álvarez VA, Leonardi D. Miconazole nitrate microparticles in lidocaine loaded films as a treatment for oropharyngeal candidiasis. Materials. 2023;16:3586. https://doi.org/10.3390/ma16093586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ardizzoni A, Boaretto G, Pericolini E, Pinetti D, de Capezzone JA, Durando L, et al. Effects of benzydamine and mouthwashes containing benzydamine on Candida albicans adhesion, biofilm formation, regrowth, and persistence. Clin Oral Invest. 2022;26:3613–25. https://doi.org/10.1007/s00784-021-04330-8.

    Article  Google Scholar 

  14. Kanagalingam J, Feliciano R, Hah JH, Labib H, Le TA, Lin JC. Practical use of povidone-iodine antiseptic in the maintenance of oral health and in the prevention and treatment of common oropharyngeal infections. Int J Clin Pract. 2015;69(11):1247–56. https://doi.org/10.1111/ijcp.12707.

    Article  CAS  PubMed  Google Scholar 

  15. Nittayananta W, Limsuwan S, Srichana T, Sae-Wong C, Amnuaikit T. Oral spray containing plant-derived compounds is effective against common oral pathogens. Arch Oral Biol. 2018;90:80–5. https://doi.org/10.1016/j.archoralbio.2018.03.002.

    Article  CAS  PubMed  Google Scholar 

  16. Jitrangsri K, Lertsuphotvanit N, Kabthong N, Phaechamud T. Metronidazole loaded camphor based in situ forming matrix for periodontitis treatment. AAPS PharmSciTech. 2023;24:185. https://doi.org/10.1208/s12249-023-02640-6.

    Article  CAS  PubMed  Google Scholar 

  17. Puyathorn N, Lertsuphotvanit N, Chantadee T, Pichayakorn W, Phaechamud T. Lincomycin HCl-loaded borneol-based in situ gel for periodontitis treatment. Gels. 2023;9:495. https://doi.org/10.3390/gels9060495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Puyathorn N, Senarat S, Lertsuphotvanit N, Phaechamud T. Physicochemical and bioactivity characteristics of doxycycline hyclate-loaded solvent removal-induced ibuprofen-based in situ forming gel. Gels. 2023;9:128. https://doi.org/10.3390/gels9020128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lizambard M, Menu T, Fossart M, Bassand C, Agossa K, Huck O, et al. In-situ forming implants for the treatment of periodontal diseases: simultaneous controlled release of an antiseptic and an anti-inflammatory drug. Int J Pharm. 2019;15:118833. https://doi.org/10.1016/j.ijpharm.2019.118833.

    Article  CAS  Google Scholar 

  20. Li X, Fan R, Wang Y, Wu M, Tong A, Shi J, et al. In situ gel-forming dual drug delivery system for synergistic combination therapy of colorectal peritoneal carcinomatosis. RSC Adv. 2015;5:101494–506.

    Article  CAS  Google Scholar 

  21. Batool F, Agossa K, Lizambard M, Petit C, Bugueno IM, Delcourt-Debruyne E, et al. In-situ forming implants loaded with chlorhexidine and ibuprofen for periodontal treat-ment: proof of concept study in vivo. Int J Pharm. 2019;5:118564. https://doi.org/10.1016/j.ijpharm.2019.118564.

    Article  CAS  Google Scholar 

  22. Puyathorn N, Sirirak J, Chantadee T, Phaechamud T. Phase separation and intermolecular binding energy of ibuprofen in some organic solvents. Mater Today: Proc. 2022;65(4):2303–8. https://doi.org/10.1016/j.matpr.2022.05.030.

    Article  CAS  Google Scholar 

  23. Bello OS, Alagbada TC, Alao OC, Olatunde AM. Sequestering a non-steroidal anti-inflammatory drug using modified orange peels. Appl Water Sci. 2020;10:172. https://doi.org/10.1007/s13201-020-01254-8.

    Article  CAS  Google Scholar 

  24. ** J, Chang Q, Chan CK, Meng ZY, Wang GN, Sun JB, Wang YT, Tong HH, Zheng Y. Formulation development and bioavailability evaluation of a self-nanoemulsified drug delivery system of oleanolic acid. AAPS PharmSciTech. 2009;10(1):172–82. https://doi.org/10.1208/s12249-009-9190-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Srichan T, Phaechamud T. Designing solvent exchange-induced in situ forming gel from aqueous insoluble polymers as matrix base for periodontitis treatment. AAPS PharmSciTech. 2017;18(1):194–201. https://doi.org/10.1208/s12249-016-0507-1.

    Article  CAS  PubMed  Google Scholar 

  26. Ike E, Ezike SC. Estimation of viscosity Arrhenius pre-exponential factor and activation energy of some organic liquids. Int J Recent Res Phys Chem Sci. 2018;5(1):18–26.

    Google Scholar 

  27. Hsin WL, Sheng YJ, Lin SY, Tsao HK. Surface tension increment due to solute addition. Phys Rev E Stat Nonlin Soft Matter Phys. 2004;69:031605. https://doi.org/10.1103/PhysRevE.69.031605.

    Article  CAS  PubMed  Google Scholar 

  28. Golmaghani-Ebrahimi E, Bagheri A, Fazli M. The influence of temperature on surface concentration and interaction energy between components in binary liquid systems. J Chem Thermodyn. 2020;146:10615. https://doi.org/10.1016/j.jct.2020.106105.

    Article  CAS  Google Scholar 

  29. Qazi MJ, Schlegel SJ, Backus EGH, Bonn M, Bonn D, Shahidzadeh N. Dynamic surface tension of surfactants in the presence of high salt concentrations. Langmuir. 2020;36:7956–64. https://doi.org/10.1021/acs.langmuir.0c01211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lertsuphotvanit N, Sirirak J, Tamdee P, Tuntarawongsa S, Phaechamud T, Chantadee T. Ways to assess and regulate the performance of a bi-mechanism-induced borneol-based in situ forming matrix. Pharmaceutics. 2023;15:2053. https://doi.org/10.3390/pharmaceutics15082053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khaing EM, Intaraphairot T, Santimaleeworagun W, Phorom Y, Chuenbarn T, Phaechamud T. Natural-resin in-situ-forming gels: physicochemical characteristics and bioactivities. Pharm Sci Asia. 2021;48:461–70. https://doi.org/10.29090/psa.2021.05.20.077.

    Article  CAS  Google Scholar 

  32. Senarat S, Charoenteeraboon J, Praphanwittaya P, Phaechamud T. Phase behavior of doxycycline hyclate-incorporated bleached shellac in-situ forming gel/microparticle after solvent movement. Key Eng Mater. 2020;859:21–6. https://doi.org/10.4028/www.scientific.net/KEM.859.21.

    Article  Google Scholar 

  33. Lertsuphotvanit N, Tuntarawongsa S, Jitrangsri K, Phaechamud T. Clotrimazole-loaded borneol-based in situ forming gel as oral sprays for oropharyngeal candidiasis therapy. Gels. 2023;9:412. https://doi.org/10.3390/gels9050412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chantadee T, Santimaleeworagun W, Phorom Y, Chuenbarn T, Phaechamud T. Saturated fatty acid-based in situ forming matrices for localized antimicrobial delivery. Pharmaceutics. 2020;12:808. https://doi.org/10.3390/pharmaceutics12090808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Himawan C, Starov VM, Stapley AG. Thermodynamic and kinetic aspects of fat crystallization. Adv Colloid Interface Sci. 2006;122:3–33. https://doi.org/10.1016/j.cis.2006.06.016.

    Article  CAS  PubMed  Google Scholar 

  36. Rahman M, Ahmad S, Tarabokija J, Bilgili E. Roles of surfactant and polymer in drug release from spray-dried hybrid nanocrystal-amorphous solid dispersions (HyNASDs). Powder Technol. 2020;361:663–78. https://doi.org/10.1016/j.powtec.2019.11.058.

    Article  CAS  Google Scholar 

  37. Do MP, Neut C, Delcourt E, Certo ST, Siepmann J, Siepmann F. In situ forming implants for periodontitis treatment with improved adhesive properties. Eur J Pharm Biopharm. 2014;88(2):342–50. https://doi.org/10.1016/j.ejpb.2014.05.006.171.

    Article  CAS  PubMed  Google Scholar 

  38. Puyathorn N, Tamdee P, Sirirak J, Okonogi S, Phaechamud T, Chantadee T. Computational insight of phase transformation and drug release behaviour of doxycycline-loaded ibuprofen-based in-situ forming gel. Pharmaceutics. 2023;15:2315. https://doi.org/10.3390/pharmaceutics15092315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lipson BK, Yannuzzi LA. Complications of intravenous fluorescein injections. Int Ophthalmol Clin. 1989;29:200–5. https://doi.org/10.1097/00004397-198902930-00011.

    Article  CAS  PubMed  Google Scholar 

  40. Alemán-Nava GS, Cuellar-Bermudez SP, Cuaresma M, Bosma R, Muylaert K, Ritmann BE, et al. How to use Nile red, a selective fluorescent stain for microalgal neutral lipids. J Microbiol Methods. 2016;128:74–9.

    Article  PubMed  Google Scholar 

  41. Martinez V, Henary M. Nile red and Nile blue: applications and syntheses of structural analogues. Chemistry. 2016;22(39):13764–82.

    Article  CAS  PubMed  Google Scholar 

  42. Senarat S, Tuntarawongsa S, Lertsuphotvanit N, Rojviriya C, Phaechamud T, Chantadee T. Levofloxacin HCl-loaded eudragit L-based solvent exchange-induced in situ forming gel using monopropylene glycol as a solvent for periodontitis treatment. Gels. 2023;9:583. https://doi.org/10.3390/gels9070583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. El-Housiny S, Shams Eldeen MA, El-Attar YA, Salem HA, Attia D, Bendas ER, et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv. 2018;25(1):78–90. https://doi.org/10.1080/10717544.2017.1413444.

    Article  CAS  PubMed  Google Scholar 

  44. Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An updated overview of the emerging role of patch and film-based buccal delivery systems. Pharmaceutics. 2021;13:1206. https://doi.org/10.3390/pharmaceutics13081206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yehia SA, El-Gazayerly ON, Basalious EB. Fluconazole mucoadhesive buccal films: in vitro/in vivo performance. Curr Drug Deliv. 2009;6(1):17–27. https://doi.org/10.2174/156720109787048195.

    Article  CAS  PubMed  Google Scholar 

  46. Hmingthansanga V, Singh N, Banerjee S, Manickam S, Velayutham R, Natesan S. Improved topical drug delivery: role of permeation enhancers and advanced approaches. Pharmaceutics. 2022;14:2818. https://doi.org/10.3390/pharmaceutics14122818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Darío A, Tinjacá FM, Almanza OA, Jouyban A, Acree WE Jr. Effect of N-methyl-pyrrolidone (NMP) on the equilibrium solubility of meloxicam in aqueous media: correlation, dissolution thermodynamics, and preferential solvation. ACS Omega. 2022;7:37988–8002. https://doi.org/10.1021/acsomega.2c05189.

    Article  CAS  Google Scholar 

  48. Varrassi G, Pergolizzi JV, Dowling P, Paladini A. Ibuprofen safety at the golden anniversary: are all NSAIDs the same? A narrative review. Adv Ther. 2020;37:61–82. https://doi.org/10.1007/s12325-019-01144-9.

    Article  PubMed  Google Scholar 

  49. Mazaleuskaya LL, Theken KN, Gong L, Thorn CF, FitzGerald GA, Altman RB, et al. Pharm GKB summary: ibuprofen pathways. Pharmacogenet Genom. 2015;25(2):96–106. https://doi.org/10.1097/FPC.0000000000000113.

    Article  CAS  Google Scholar 

  50. Villanueva M, Heckenberger R, Strobach H, Palmér M, Schrör K. Equipotent inhibition by R(−)-, S(+)- and racemic ibuprofen of human polymorphonuclear cell function in vitro. Br J Clin Pharmacol. 1993;35:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abuhajar E, Ali K, Zulfiqar G, Al Ansari K, Raja HZ, Bishti S, et al. Management of chronic atrophic candidiasis (denture stomatitis)-a narrative review. Int J Environ Res Public Health. 2023;20(4):3029. https://doi.org/10.3390/ijerph20043029.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Villar CC, Kashleva H, Nobile CJ, Mitchell AP, Dongari-Bagtzoglou A. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun. 2007;75:2126–35. https://doi.org/10.1128/IAI.00054-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Swidergall M, Filler SG. Oropharyngeal candidiasis: fungal invasion and epithelial cell responses. PLoS Pathog. 2017;13(1):e1006056. https://doi.org/10.1371/journal.ppat.1006056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Phaechamud T, Mahadlek J, Charoenteeraboon J, Choopun S. Characterization and antimicrobial activity of N-methyl-2-pyrrolidone-loaded ethylene oxide-propylene oxide block copolymer thermosensitive gel. Indian J Pharm Sci. 2012;74:498. https://doi.org/10.4103/0250-474x.110574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iamir EM, Ibrahim SY. Physical properties of aqueous N-methyl pyrrolidone at different temperatures. Pet Sci Technol. 2004;22:1571–9. https://doi.org/10.1081/LFT-200027883.

    Article  CAS  Google Scholar 

  56. Büchter A, Meyer U, Kruse-Lösler B, Joos U, Kleinheinz J. Sustained release of doxycycline for the treatment of peri-implantitis: randomised controlled trial. Br J Oral Maxillofac Surg. 2004;42:439–44. https://doi.org/10.1016/j.bjoms.2004.06.005.

    Article  PubMed  Google Scholar 

  57. Zeng L, **n X, Zhang Y. Development and characterization of promising Cremophor EL-stabilized o/w nanoemulsions containing short-chain alcohols as a cosurfactant. RSC Adv. 2017;7:19815–27. https://doi.org/10.1039/C6RA27096D.

    Article  CAS  Google Scholar 

  58. Scripture CD, Figg WD, Sparreboom A. Paclitaxel chemotherapy: from empiricism to a mechanism-based formulation strategy. Ther Clin Risk Manag. 2005;1(2):107–14. https://doi.org/10.2147/tcrm.1.2.107.62910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gullo FP, Rossi SA, Sardi J, Teodoro VLI, Mendes-Giannini MJS, Fusco-Almeida AM. Cryptococcosis: epidemiology, fungal resistance, and new alternatives for treatment. Eur J Clin Microbiol Infect Dis. 2013;32(11):1377–91.

    Article  CAS  PubMed  Google Scholar 

  60. Rocha LF, Pippi B, Fuentefria AM, Mezzari A. Synergistic effect of ibuprofen with itraconazole and fluconazole against Cryptococcus neoforman. Braz J Pharm Sci. 2020;56:e18599. https://doi.org/10.1590/s2175-97902019000318599.

    Article  CAS  Google Scholar 

  61. Argenta JS, Alves SH, Silveira F, Maboni G, Zanette RA, Cavalheiro AS, et al. In vitro and in vivo susceptibility of two-drug and three-drug combinations of terbinafine, itraconazole, caspofungin, ibuprofen and fluvastatin against Pythium insidiosum. Vet Microbiol. 2012;157(1–2):137–42.

    Article  CAS  PubMed  Google Scholar 

  62. Rusu E, Radu-Popescu M, Pelinescu D, Vassu T. Treatment with some anti-inflammatory drugs reduces germ tube formation in Candida albicans strains. Braz J Microbiol. 2014;45(4):1379–83.

    Article  CAS  PubMed  Google Scholar 

  63. Leelaprakash G, Dass SM. In vitro anti-inflammatory activity of methanol extract of Enicostemma axillare. Int J Drug Dev Res. 2011;3:189–96.

    Google Scholar 

  64. Kumarasinghe N, Dharmadeva S, Galgamuwa L, Prasadinie C. In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Int Q J Res Ayurveda. 2018;39:239. https://doi.org/10.4103/ayu.ayu_27_18.

    Article  Google Scholar 

  65. Oesterreicher Z, Eberl S, Zeitlinger M. Impact of different antimycotics on cytokine levels in an in vitro aspergillosis model in human whole blood. Infection. 2020;48:65–73. https://doi.org/10.1007/s15010-019-01346-x.

    Article  CAS  PubMed  Google Scholar 

  66. Chaiya P, Senarat S, Phaechamud T, Narakornwit W. In vitro anti-inflammatory activity using thermally inhibiting protein denaturation of egg albumin and antimicrobial activities of some organic solvents. Mater Today: Proc. 2022;65:2290–5. https://doi.org/10.1016/j.matpr.2022.04.916.

    Article  CAS  Google Scholar 

  67. Roche-Molina M, Hardwick B, Sanchez-Ramos C, Sanz-Rosa D, Gewert D, Cruz FM, et al. The pharmaceutical solvent N-methyl-2-pyrrolidone (NMP) attenuates inflammation through Krüppel-like factor 2 activation to reduce atherogenesis. Sci Rep. 2020;10:1–16. https://doi.org/10.1038/s41598-020-68350-2.

    Article  CAS  Google Scholar 

  68. Ghayor C, Gjoksi B, Siegenthaler B, Weber FE. N-methyl pyrrolidone (NMP) inhibits lipopolysaccharide-induced inflammation by suppressing NF-κB signaling. Inflamm Res. 2015;64:527–36. https://doi.org/10.1007/s00011-015-0833-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, and the School of Engineering and Technology, Walailak University, for support and facilitation. We also thank the Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, for help and motivation.

Funding

This research was supported with the grant No. SURDI: Postdoctoral/66/5 by Silpakorn University under the postdoctoral fellowship program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: T.P.; methodology: E.M.K. and S.S.; validation: K.J. and S.S.; investigation: E.M.K., S.S., and T.P.; writing—original draft preparation: E.M.K., S.S., and T.P.; writing—review and editing: K.J. and T.P.; supervision: K. J. and T.P.; project administration: T.P.; funding acquisition: T.P. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Thawatchai Phaechamud.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Fluconazole in situ gel oral spray was fabricated using ibuprofen as a gelling agent.

• Higher ibuprofen loading reduced surface tension and retarded solvent exchange.

• The developed system effectively inhibited various Candida species and showed in vitro anti-inflammatory activity.

• Cremophor EL addition increased fluconazole and ibuprofen tissue permeations.

• Fluconazole-loaded ibuprofen in situ gel-based oral spray presents as a promising dosage form for oropharyngeal candidiasis treatment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaing, E.M., Senarat, S., Jitrangsri, K. et al. Fluconazole-Loaded Ibuprofen In Situ Gel-Based Oral Spray for Oropharyngeal Candidiasis Treatment. AAPS PharmSciTech 25, 89 (2024). https://doi.org/10.1208/s12249-024-02804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02804-y

Keywords

Navigation