Log in

Preparation of Tamsulosin Hydrochloride-Loaded Mucoadhesive In Situ Gelling Polymeric Formulation for Nasal Delivery in Geriatrics

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study aimed to prepare tamsulosin hydrochloride (HCl)-loaded in situ gelling formulation by using hydroxypropyl methylcellulose (HPMC), gellan gum, poloxamer 188, and benzalkonium chloride. Physicochemical evaluation of formulations included determination of pH, viscosity, gelation time, gel strength, drug content, and sterility. In silico study was performed to analyze interactions between polymers, drug, and mucin glycoprotein. In vitro degradation time, drug release, ex vivo mucoadhesion time, permeation, in vivo pharmacokinetics, and stability studies were performed to assess the formulation. Formulations were transparent and displayed acceptable physicochemical attributes. Tamsulosin HCl and polymers interacted via non-covalent interactions. HPMC formed hydrogen bonds, hydrophobic and van der Waals interactions with mucin protein while the drug formed hydrogen bonds only. Gel formulation degraded in simulated nasal fluid within 24 h. In situ gelling formulation showed 83.8 ± 1.7% drug release and remained adhered to the mucosa for 24.5 ± 1 h. A higher (~ 1.85 times) drug permeation was recorded through mucosa within 6 h by in situ gelling formulation when compared to control counterparts (aqueous solution of drug and in situ gelling formulation without poloxamer 188). Nasal administration of tamsulosin HCl by using in situ gelling formulation led to a ~ 3.3 and ~ 3.5 times, respectively, higher Cmax (maximum plasma concentration) and AUCtotal (total area under the curve) than the orally administered aqueous solution. Relative bioavailability of drug delivered by nasal in situ gelling formulation was 3.5 times the oral counterpart. These results indicated that the prepared in situ gelling formulation can act as a promising candidate for systemic administration of tamsulosin HCl.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Awedew AF, Han H, Abbasi B, Abbasi-Kangevari M, Ahmed MB, Almidani O, et al. The global, regional, and national burden of benign prostatic hyperplasia in 204 countries and territories from 2000 to 2019: a systematic analysis for the global burden of disease study 2019. Lancet Heal Longev. 2022;3:e754-76.

    Article  Google Scholar 

  2. Dunn CJ, Matheson A, Faulds DM. Tamsulosin: a review of its pharmacology and therapeutic efficacy in the management of lower urinary tract symptoms. Drugs Aging. 2002;19:135–61.

    Article  CAS  PubMed  Google Scholar 

  3. O’Leary MP. Tamsulosin: current clinical experience. Urology. 2001;58:42–8.

    Article  PubMed  Google Scholar 

  4. Almehmady AM, Elsisi AM. Development, optimization, and evaluation of tamsulosin nanotransfersomes to enhance its permeation and bioavailability. J Drug Deliv Sci Technol. 2020;57:101667.

    Article  CAS  Google Scholar 

  5. Bakhaidar RB, Hosny KM, Mahier IM, Rizq WY, Safhi AY, Bukhary DM, et al. Development and optimization of a tamsulosin nanostructured lipid carrier loaded with saw palmetto oil and pumpkin seed oil for treatment of benign prostatic hyperplasia. Drug Deliv. 2022;29:2579–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khatri K, Goyal AK, Gupta PN, Mishra N, Mehta A, Vyas SP. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine. 2008;26:2225–33.

    Article  CAS  PubMed  Google Scholar 

  7. Bonferoni MC, Rossi S, Sandri G, Ferrari F, Gavini E, Rassu G, et al. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics. 2019;11:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm. 2008;358:285–91.

    Article  CAS  PubMed  Google Scholar 

  9. Aukema AAC, Mulder PGH, Fokkens WJ. Treatment of nasal polyposis and chronic rhinosinusitis with fluticasone propionate nasal drops reduces need for sinus surgery. J Allergy Clin Immunol. 2005;115:1017–23.

    Article  CAS  PubMed  Google Scholar 

  10. Rathnam G, Narayanan N, Ilavarasan R. Carbopol-based gels for nasal delivery of progesterone. AAPS PharmSciTech. 2008;9:1078–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rogol AD, Tkachenko N, Bryson N. NatestoTM, a novel testosterone nasal gel, normalizes androgen levels in hypogonadal men. Andrology. 2016;4:46–54.

    Article  CAS  PubMed  Google Scholar 

  12. Altuntaş E, Yener G. Formulation and evaluation of thermoreversible in situ nasal gels containing mometasone furoate for allergic rhinitis. AAPS PharmSciTech. 2017;18:2673–82.

    Article  PubMed  Google Scholar 

  13. Rao M, Agrawal DK, Shirsath C. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev Ind Pharm. 2016;43:142–50.

    Article  PubMed  Google Scholar 

  14. Touitou E, Illum L. Nasal drug delivery. Drug Deliv Transl Res. 2013;3:1–3.

    Article  PubMed  Google Scholar 

  15. Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res. 2022;12:735–57.

    Article  PubMed  Google Scholar 

  16. Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm. 2021;607:120994.

    Article  CAS  PubMed  Google Scholar 

  17. Kolawole OM, Cook MT. In situ gelling drug delivery systems for topical drug delivery. Eur J Pharm Biopharm. 2023;184:36–49.

    Article  CAS  PubMed  Google Scholar 

  18. Asantewaa Y, Aylott J, Burley JC, Billa N, Roberts CJ. Correlating physicochemical properties of boronic acid-chitosan conjugates to glucose adsorption sensitivity. Pharmaceutics. 2013;5:69–80.

    Article  CAS  Google Scholar 

  19. Ganguly S, Dash AK. A novel in situ gel for sustained drug delivery and targeting. Int J Pharm. 2004;276:83–92.

    Article  CAS  PubMed  Google Scholar 

  20. Moon HJ, Ko DY, Park MH, Joo MK, Jeong B. Temperature-responsive compounds as in situ gelling biomedical materials. Chem Soc Rev. 2012;41:4860–83.

    Article  CAS  PubMed  Google Scholar 

  21. Liu W, Zhang B, Lu WW, Li X, Zhu D, De Yao K, et al. A rapid temperature-responsive sol–gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials. 2004;25:3005–12.

    Article  CAS  PubMed  Google Scholar 

  22. Jeong B, Gutowska A. Lessons from nature: Stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 2002;20:305–11.

    Article  CAS  PubMed  Google Scholar 

  23. Khare P, Chogale MM, Kakade P, Patravale VB. Gellan gum–based in situ gelling ophthalmic nanosuspension of posaconazole. Drug Deliv Transl Res. 2022;12:2920–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nayak AK, Hasnain MS, Pal K, Banerjee I, Pal D. Gum-based hydrogels in drug delivery. In: Pal K, Banerjee I, Sarkar P, Kim D, Deng W-P, Dubey NK, et al., editors. Biopolym. Formul. Biomed. Food Appl. 1st ed. Elsevier Inc.; 2020.

  25. Liu S, Chen X, Zhang Y. Hydrogels and hydrogel composites for 3D and 4D printing applications. 1st ed. Sadasivuni KK, Deshmukh K, Almaadeed MA, editors. 3D 4D Print. Polym. Nanocomposite Mater. Process. Appl. Challenges. Elsevier Inc.; 2019.

  26. Gupta H, Jain S, Mathur R, Mishra P, Mishra AK, Velpandian T. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug Deliv. 2008;14:507–15.

    Article  Google Scholar 

  27. Yermak IM, Davydova VN, Volod’ko AV. Mucoadhesive marine polysaccharides. Mar Drugs. 2022;20:1–25.

    Article  Google Scholar 

  28. Durgapal S, Rana M, Mukhopadhyay S, Rana AJ, Goswami L, Joshi S. Formulation and evaluation of in-situ nasal gel of montelukast sodium for the effective treatment of asthma. Int J Pharm Sci Res. 2018;9:2792–9.

    CAS  Google Scholar 

  29. Naik A, Nair H. Formulation and evaluation of thermosensitive biogels for nose to brain delivery of doxepin. Biomed Res Int. 2014;2014:1–11.

    Article  Google Scholar 

  30. Karpagavalli L, Gopalasrsatheeskumar K, Narayanan N, Maheswaran A, Raj AI, Priya JH. Formulation and evaluation of zolpidem nasal in situ gel. World J Pharm Res. 2017;6:940–51.

    CAS  Google Scholar 

  31. Jagdale S, Shewale N, Kuchekar BS. Optimization of thermoreversible in situ nasal gel of timolol maleate. Scientifica (Cairo). 2016;2016:1–12.

    Article  Google Scholar 

  32. Laddha UD, Kshirsagar SJ. Formulation of nanoparticles loaded in situ gel for treatment of dry eye disease: in vitro, ex vivo and in vivo evidences. J Drug Deliv Sci Technol. 2021;61:102112.

    Article  CAS  Google Scholar 

  33. Kurniawansyah IS, Rusdiana T, Sopyan I, Ramoko H, Wahab HA, Subarnas A. In situ ophthalmic gel forming systems of poloxamer 407 and hydroxypropyl methyl cellulose mixtures for sustained ocular delivery of chloramphenicole: optimization study by factorial design. Heliyon. 2020;6:e05365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Makwana SB, Patel VA, Parmar SJ. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci. 2016;6:1–6.

    Article  CAS  PubMed  Google Scholar 

  35. Ruan X, Hu J, Lu L, Wang Y, Tang C, Liu F, et al. Poloxamer 407/188 binary thermosensitive gel as a moxidectin delivery system: in vitro release and in vivo evaluation. Molecules. 2022;27:1–11.

    Article  Google Scholar 

  36. Baloglu E, Karavana SY, Senyigit ZA, Guneri T. Rheological and mechanical properties of poloxamer mixtures as a mucoadhesive gel base. Pharm Dev Technol. 2011;16:627–36.

    Article  CAS  PubMed  Google Scholar 

  37. Fathalla ZMA, Vangala A, Longman M, Khaled KA, Hussein AK, El-Garhy OH, et al. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: design, characterisation, toxicity and transcorneal permeation studies. Eur J Pharm Biopharm. 2017;114:119–34.

    Article  CAS  Google Scholar 

  38. Soliman KA, Ullah K, Shah A, Jones DS, Singh TRR. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov Today. 2019;24:1575–86.

    Article  CAS  PubMed  Google Scholar 

  39. Pereira BMP, Tagkopoulos I. Benzalkonium chlorides: uses, regulatory status, and microbial resistance. Appl Environ Microbiol. 2019;85:1–13.

    Google Scholar 

  40. Galgatte UC, Kumbhar AB, Chaudhari PD. Development of in situ gel for nasal delivery: design, optimization, in vitro and in vivo evaluation. Drug Deliv. 2014;21:62–73.

    Article  CAS  PubMed  Google Scholar 

  41. Al-Wiswasi NN, Al-Khedairy EBH. Formulation and in vitro evaluation of in-situ gelling liquid suppositories for naproxen. Iraqi J Pharm Sci. 2017;17:31–8.

    Google Scholar 

  42. Siddique MI, Katas H, Sarfraz M, Chohan TA, Jamil A, Mohd Amin MCI. Clinical insights into topically applied multipronged nanoparticles in subjects with atopic dermatitis. J Drug Deliv Sci Technol. 2021;65:102744.

    Article  CAS  Google Scholar 

  43. Ahmad H, Ali Chohan T, Mudassir J, Mehta P, Yousef B, Zaman A, et al. Evaluation of sustained-release in-situ injectable gels, containing naproxen sodium, using in vitro, in silico and in vivo analysis. Int J Pharm. 2022;616:121512.

    Article  CAS  PubMed  Google Scholar 

  44. England RJA, Homer JJ, Knight LC, Ell SR. Nasal pH measurement: a reliable and repeatable parameter. Clin Otolaryngol Allied Sci. 1999;24:67–8.

    Article  CAS  PubMed  Google Scholar 

  45. Yu M, Yuan W, Li D, Schwendeman A, Schwendeman SP. Predicting drug release kinetics from nanocarriers inside dialysis bags. J Control Release. 2019;315:23–30.

    Article  CAS  PubMed  Google Scholar 

  46. Li T, Bao Q, Shen J, Lalla RV, Burgess DJ. Mucoadhesive in situ forming gel for oral mucositis pain control. Int J Pharm. 2020;580:119238.

    Article  CAS  PubMed  Google Scholar 

  47. Corazza E, di Cagno MP, Bauer-Brandl A, Abruzzo A, Cerchiara T, Bigucci F, et al. Drug delivery to the brain: in situ gelling formulation enhances carbamazepine diffusion through nasal mucosa models with mucin. Eur J Pharm Sci. 2022;179:106294.

    Article  CAS  PubMed  Google Scholar 

  48. Jillani U, Mudassir J, Arshad MS, Mehta P, Alyassin Y, Nazari K, et al. Design and evaluation of agarose based buccal films containing zolmitriptan succinate: application of physical and chemical enhancement approaches. J Drug Deliv Sci Technol. 2022;69:103041.

    Article  CAS  Google Scholar 

  49. Scutt G, Waxman D. Improved estimates of mean pharmacokinetic parameters for increased accuracy in dosing and reduced risk to patients. Br J Clin Pharmacol. 2021;87:3518–30.

    Article  PubMed  Google Scholar 

  50. Chughtai B, Forde JC, Thomas DDM, Laor L, Hossack T, Woo HH, et al. Benign prostatic hyperplasia. Nat Rev Dis Prim. 2016;2:1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SJR: investigation, formal analysis, writing—original draft. SZ: investigation, formal analysis, writing—original draft. AS: investigation, formal analysis, writing—original draft. MB: formal analysis, writing—original draft, writing—review and editing. JM: formal analysis, writing—original draft, writing—review and editing. MA: writing—original draft, writing—review and editing. TC: writing—original draft, writing—review and editing. MSA: conceptualization, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Muhammad Sohail Arshad.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S.J., Zafar, S., Shahzad, A. et al. Preparation of Tamsulosin Hydrochloride-Loaded Mucoadhesive In Situ Gelling Polymeric Formulation for Nasal Delivery in Geriatrics. AAPS PharmSciTech 24, 242 (2023). https://doi.org/10.1208/s12249-023-02700-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02700-x

Keywords

Navigation