Log in

Inclusion Complex of Ibuprofen-β-Cyclodextrin Incorporated in Gel for Mucosal Delivery: Optimization Using an Experimental Design

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

β-Cyclodextrin/ibuprofen inclusion complex was synthesized by freeze-drying method and characterized for phase solubility profiles, infrared spectra, thermal analysis, and X-ray powder diffractograms. The inclusion complex with HP-β-CD, as confirmed by molecular dynamics simulations, enhanced the aqueous solubility of ibuprofen by almost 30-fold compared to ibuprofen alone. Different grades of Carbopol (Carbopol 934P/Carbopol 974P/Carbopol 980 NF/Carbopol Ultrez 10 NF) and cellulose derivatives (HPMC K100M/HPMC K15M/HPMC K4M/HPMC E15LV/HPC) were evaluated for mucoadhesive gels incorporating the inclusion complex. The central composite design generated by Design-Expert was employed to optimize the mucoadhesive gel using two independent variables (a varying combination of two gelling agents) on three dependent variables (drug content and in vitro drug release at 6 h and 12 h). Except for the methylcellulose-based gels, most of the gels (0.5%, 0.75%, and 1% alone or as a mixture thereof) exhibited an extended-release of ibuprofen, ranging from 40 to 74% over 24 h and followed the Korsmeyer-Peppas kinetics model. Using this test design, 0.95% Carbopol 934P and 0.55% HPC-L formulations were optimized to increase ibuprofen release, enhance mucoadhesion, and be non-irritating in ex vivo chorioallantoic membrane studies. The present study successfully developed a mucoadhesive gel containing the ibuprofen-β-cyclodextrin inclusion complex with sustained release.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Ghosh S, Roy G, Mukherjee B. Dental mold: a novel formulation to treat common dental disorders. AAPS PharmSciTech. 2009;10(2):692–702. https://doi.org/10.1208/s12249-009-9255-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Orlando BJ, Lucido MJ, Malkowski MG. The structure of ibuprofen bound to cyclooxygenase-2. J Struct Biol. 2015;189(1):62–6. https://doi.org/10.1016/j.jsb.2014.11.005.

    Article  CAS  PubMed  Google Scholar 

  3. Pozzi A, Gallelli L. Pain management for dentists: the role of ibuprofen. Ann Stomatol (Roma). 2011;2(3–4 Suppl):3–24.

    PubMed  Google Scholar 

  4. Cooper SA. The relative efficacy of ibuprofen in dental pain. Compend Contin Educ Dent. 1986;7(8):578, 80–1, 84–8 passim.

  5. Álvarez C, Núñez I, Torrado JJ, Gordon J, Potthast H, García-Arieta A. Investigation on the Possibility of biowaivers for ibuprofen. J Pharm Sci. 2011;100(6):2343–9. https://doi.org/10.1002/jps.22472.

    Article  CAS  PubMed  Google Scholar 

  6. Drini M. Peptic ulcer disease and non-steroidal anti-inflammatory drugs. Aust Prescr. 2017;40(3):91–3. https://doi.org/10.18773/austprescr.2017.037.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules. 2019;24(3). https://doi.org/10.3390/molecules24030603.

  8. Czyrski A. Determination of the Lipophilicity of ibuprofen, naproxen, ketoprofen, and flurbiprofen with thin-layer chromatography. J Chem. 2019;2019:3407091. https://doi.org/10.1155/2019/3407091.

    Article  CAS  Google Scholar 

  9. Carneiro SB, Costa Duarte FÍ, Heimfarth L, Siqueira Quintans JdS, Quintans-Júnior LJ, Veiga Júnior VFd, et al. Cyclodextrin-drug inclusion complexes: in vivo and in vitro approaches. Int J Mol Sci. 2019;20(3):642. https://doi.org/10.3390/ijms20030642.

  10. Connors KA. The stability of cyclodextrin complexes in solution. Chem Rev. 1997;97(5):1325–58. https://doi.org/10.1021/cr960371r.

    Article  CAS  PubMed  Google Scholar 

  11. Chen C-Y, Chen F-A, Wu A-B, Hsu H-C, Kang J-J, Cheng H-W. Effect of hydroxypropyl-β-cyclodextrin on the solubility, photostability and in-vitro permeability of alkannin/shikonin enantiomers. Int J Pharm. 1996;141(1):171–8. https://doi.org/10.1016/0378-5173(96)04634-0.

    Article  CAS  Google Scholar 

  12. Tommasini S, Calabrò ML, Raneri D, Ficarra P, Ficarra R. Combined effect of pH and polysorbates with cyclodextrins on solubilization of naringenin. J Pharm Biomed Anal. 2004;36(2):327–33. https://doi.org/10.1016/j.jpba.2004.06.013.

    Article  CAS  PubMed  Google Scholar 

  13. Hładoń T, Pawlaczyk J, Szafran; B. Stability of ibuprofen in its inclusion complex with β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2000;36(1):1–3. https://doi.org/10.1023/A:1008046724527.

  14. Motoyama K, Nagatomo K, AbdElazim SO, Hirayama F, Uekama K, Arima H. Potential use of 2-hydroxypropyl-beta-cyclodextrin for preparation of orally disintegrating tablets containing dl-alpha-tocopheryl acetate, an oily drug. Chem Pharm Bull (Tokyo). 2009;57(11):1206–12. https://doi.org/10.1248/cpb.57.1206.

    Article  CAS  PubMed  Google Scholar 

  15. Woldum HS, Larsen KL, Madsen F. Cyclodextrin controlled release of poorly water-soluble drugs from hydrogels. Drug Deliv. 2008;15(1):69–80. https://doi.org/10.1080/10717540701829267.

    Article  CAS  PubMed  Google Scholar 

  16. Ai F, Wang J, Li Y, Ma Y. Effect of drug particle size on complexation, physicochemical properties and dissolution of cyclodextrin inclusion complexes. Indian J Pharm Sci. 2017;79(1):131–8. https://doi.org/10.4172/pharmaceutical-sciences.1000209.

    Article  CAS  Google Scholar 

  17. Conceição J, Adeoye O, Cabral-Marques HM, Lobo JMS. Cyclodextrins as excipients in tablet formulations. Drug Discov Today. 2018;23(6):1274–84. https://doi.org/10.1016/j.drudis.2018.04.009.

    Article  CAS  PubMed  Google Scholar 

  18. Marques HMC. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J. 2010;25(5):313–26. https://doi.org/10.1002/ffj.2019.

    Article  CAS  Google Scholar 

  19. Gould S, Scott RC. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem Toxicol. 2005;43(10):1451–9. https://doi.org/10.1016/j.fct.2005.03.007.

    Article  CAS  PubMed  Google Scholar 

  20. Sherje A, Londhe V. Inclusion complexes of hydroxy propyl-β-cyclodextrin and paliperidone: preparation and characterization. Curr Drug Discov Technol. 2014;11(4):271–8. https://doi.org/10.2174/1570163812666150109103618.

    Article  CAS  PubMed  Google Scholar 

  21. Creteanu A, Pamfil D, Vasile C, Tantaru G, Ghiciuc CM, Ochiuz L, et al. Study on the role of the inclusion complexes with 2-hydroxypropyl-<i>β</i>-cyclodextrin for oral administration of amiodarone. International Journal of Polymer Science. 2019;2019:1695189. https://doi.org/10.1155/2019/1695189.

    Article  CAS  Google Scholar 

  22. Higuchi T, Connors KA. Phase solubility techniques. In: Reilly CN, editor. Advances in Analytical Chemistry Instrumentation, vol. 4. New York, NY: Interscience; 1965. p. 117–212.

    Google Scholar 

  23. Li N, Wang N, Wu T, Qiu C, Wang X, Jiang S, et al. Preparation of curcumin-hydroxypropyl-β-cyclodextrin inclusion complex by cosolvency-lyophilization procedure to enhance oral bioavailability of the drug. Drug Dev Ind Pharm. 2018;44(12):1966–74. https://doi.org/10.1080/03639045.2018.1505904.

    Article  CAS  PubMed  Google Scholar 

  24. Sravya, Maddukuri, Deveswaran, Rajamanickam, Bharath, Srinivasan, et al. Development of orodispersible tablets of candesartan cilexetil-B-cyclodextrin complex. J Pharm. 2013:13. https://doi.org/10.1155/2013/583536.

  25. Patel P , Pol A, More S, Kalia; DKY, Patravale V. Colloidal soft nanocarrier for transdermal delivery of dopamine agonist: ex vivo and in vivo evaluation. J Biomed Nanotechnol. 2014;10:13.

  26. Patel PA, Patil SC, Kalaria DR, Kalia YN, Patravale VB. Comparative in vitro and in vivo evaluation of lipid based nanocarriers of Huperzine A. Int J Pharm. 2013;446(1):16–23. https://doi.org/10.1016/j.ijpharm.2013.02.014.

    Article  CAS  PubMed  Google Scholar 

  27. Srivastava M, Kohli K, Ali M. Formulation development of novel in situ nanoemulgel (NEG) of ketoprofen for the treatment of periodontitis. Drug Deliv. 2016;23(1):154–66. https://doi.org/10.3109/10717544.2014.907842.

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Yan J, Yu S, Wang P. Formulation and in vitro release kinetics of mucoadhesive blend gels containing matrine for buccal administration. AAPS PharmSciTech. 2018;19(1):470–80. https://doi.org/10.1208/s12249-017-0853-7.

    Article  CAS  PubMed  Google Scholar 

  29. Pereira Camelo SR, Franceschi S, Perez E, Girod Fullana S, Ré MI. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug. Drug Dev Ind Pharm. 2016;42(6):985–97. https://doi.org/10.3109/03639045.2015.1103746.

    Article  CAS  PubMed  Google Scholar 

  30. Da-Lozzo EJ, Moledo RC, Faraco CD, Ortolani-Machado CF, Bresolin TM, Silveira JL. Curcumin/xanthan-galactomannan hydrogels: rheological analysis and biocompatibility. Carbohydr Polym. 2013;93(1):279–84. https://doi.org/10.1016/j.carbpol.2012.02.036.

    Article  CAS  PubMed  Google Scholar 

  31. Vinardell MP, Mitjans M. The chorioallantoic membrane test as a model to predict the potential human eye irritation induced by commonly used laboratory solvents. Toxicol In Vitro. 2006;20(6):1066–70. https://doi.org/10.1016/j.tiv.2005.11.004.

    Article  CAS  PubMed  Google Scholar 

  32. Campbell CT, Sellers JRV. Enthalpies and entropies of adsorption on well-defined oxide surfaces: experimental measurements. Chem Rev. 2013;113(6):4106–35. https://doi.org/10.1021/cr300329s.

    Article  CAS  PubMed  Google Scholar 

  33. Fang Y, Lakey PSJ, Riahi S, McDonald AT, Shrestha M, Tobias DJ, et al. A molecular picture of surface interactions of organic compounds on prevalent indoor surfaces: limonene adsorption on SiO2. Chem Sci. 2019;10(10):2906–14. https://doi.org/10.1039/C8SC05560B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Swenson H, Stadie NP. Langmuir’s theory of adsorption: a centennial review. Langmuir. 2019;35(16):5409–26. https://doi.org/10.1021/acs.langmuir.9b00154.

    Article  CAS  PubMed  Google Scholar 

  35. Maheshwari P, Gorgol M, Kierys A, Zaleski R. Positron probing of liquid-free volume to investigate adsorption–desorption behavior of water in two-dimensional mesoporous SBA-3. J Phys Chem C. 2017;121(32):17251–62. https://doi.org/10.1021/acs.jpcc.7b04317.

    Article  CAS  Google Scholar 

  36. Arora SC, Sharma PK, Irchhaiya R, Khatkar A, Singh N, Gagoria J. Development, characterization and solubility study of solid dispersions of Cefuroxime Axetil by the solvent evaporation method. J Adv Pharm Technol Res. 2010;1(3):326–9. https://doi.org/10.4103/0110-5558.72427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ribeiro A, Figueiras A, Santos D, Veiga F. Preparation and solid-state characterization of inclusion complexes formed between miconazole and methyl-beta-cyclodextrin. AAPS PharmSciTech. 2008;9(4):1102–9. https://doi.org/10.1208/s12249-008-9143-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aleem O, Kuchekar B, Pore Y, Late S. Effect of β-cyclodextrin and hydroxypropyl β-cyclodextrin complexation on physicochemical properties and antimicrobial activity of cefdinir. J Pharm Biomed Anal. 2008;47(3):535–40. https://doi.org/10.1016/j.jpba.2008.02.006.

    Article  CAS  PubMed  Google Scholar 

  39. Pinto MF, de Moura EA, de Souza FS, Macêdo RO. Thermal compatibility studies of nitroimidazoles and excipients. J Therm Anal Calorim. 2010;102(1):323–9. https://doi.org/10.1007/s10973-010-0889-3.

    Article  CAS  Google Scholar 

  40. de Mendonça CMS, de Barros Lima IP, Aragão CFS, Gomes APB. Thermal compatibility between hydroquinone and retinoic acid in pharmaceutical formulations. J Therm Anal Calorim. 2014;115(3):2277–85. https://doi.org/10.1007/s10973-013-2941-6.

    Article  CAS  Google Scholar 

  41. Wahab A, Khan GM, Akhlaq M, Khan N, Hussain A. Pre-formulation investigation and in vitro evaluation of directly compressed ibuprofen-ethocel oral controlled release matrix tablets: a kinetic approach. Afr J Pharm Pharmacol. 2011;5:2118–27. https://doi.org/10.5897/AJPP11.128.

    Article  CAS  Google Scholar 

  42. Onischuk A, Tolstikova T, Sorokina I, Zhukova N, Baklanov A, Karasev V, et al. Analgesic effect from ibuprofen nanoparticles inhaled by male mice. J Aerosol Med Pulm Drug Deliv. 2009;22:245–53. https://doi.org/10.1089/jamp.2008.0721.

    Article  CAS  PubMed  Google Scholar 

  43. Loh GOK, Tan YTF, Peh K-K. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J Pharm Sci. 2016;11(4):536–46. https://doi.org/10.1016/j.ajps.2016.02.009.

    Article  Google Scholar 

  44. Yadav VR, Suresh S, Devi K, Yadav S. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech. 2009;10(3):752–62. https://doi.org/10.1208/s12249-009-9264-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lubrizol. Carbopol® polymer products. 2020 [cited 2020 29 March]; Available from: https://www.lubrizol.com/Health/Pharmaceuticals/Excipients/Carbopol-Polymer-Products. Accessed 20 March 2023.

  46. Varges P, Costa C, Fonseca B, Naccache M, De Souza MP. Rheological characterization of Carbopol® dispersions in water and in water/glycerol solutions. Fluids. 2019;4:3. https://doi.org/10.3390/fluids4010003.

    Article  CAS  Google Scholar 

  47. Aslani A, Malekpour N. Design, formulation, and physicochemical evaluation of periodontal propolis mucoadhesive gel. Dent Res J (Isfahan). 2016;13(6):484–93. https://doi.org/10.4103/1735-3327.197037.

    Article  PubMed  Google Scholar 

  48. Jelvehgari M, Rashidi M-R, Samadi H. Mucoadhesive and drug release properties of benzocaine gel. Iran J Pharm Sci Autumn. 2006;2:185–94.

    Google Scholar 

  49. Lefnaoui S, Moulai-Mostefa N. Investigation and optimization of formulation factors of a hydrogel network based on kappa carrageenan–pregelatinized starch blend using an experimental design. Colloids Surf, A. 2014;458:117–25. https://doi.org/10.1016/j.colsurfa.2014.01.007.

    Article  CAS  Google Scholar 

  50. Baishya H, Yangxing Z. The influence of HPMC viscosity and %HPC content as FRC parameter on the release of highly soluble drug from hydrophilic matrix tablets. J Pharm Drug Deliv Res. 2016;05. https://doi.org/10.4172/2325-9604.1000155.

  51. https://www.nippon-soda.co.jp/hpc-e/care_stable.php. [cited 2020 23 Dec 2020]. Accessed 20 March 2023.

  52. Vueba ML, Batista de Carvalho LAE, Veiga F, Sousa JJ, Pina ME. Influence of cellulose ether mixtures on ibuprofen release: MC25, HPC and HPMC K100M. Pharm Dev Technol. 2006;11(2):213–28. https://doi.org/10.1080/10837450600561349.

  53. Bhowmik M, Bain MK, Ghosh LK, Chattopadhyay D. Effect of salts on gelation and drug release profiles of methylcellulose-based ophthalmic thermo-reversible in situ gels. Pharm Dev Technol. 2011;16(4):385–91. https://doi.org/10.3109/10837451003774369.

    Article  CAS  PubMed  Google Scholar 

  54. Raval M, Bagada H. Formulation and evaluation of cyclodextrin-based thermosensitive in situ gel of azithromycin for periodontal delivery. J Pharm Innov. 2019. https://doi.org/10.1007/s12247-019-09422-3.

    Article  Google Scholar 

  55. Baliga S, Muglikar S, Kale R. Salivary pH: a diagnostic biomarker. J Indian Soc Periodontol. 2013;17(4):461–5. https://doi.org/10.4103/0972-124X.118317.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Labib GS, Farid RM. Osteogenic effect of locally applied Pentoxyfilline gel: in vitro and in vivo evaluations. Drug Deliv. 2015;22(8):1094–102. https://doi.org/10.3109/10717544.2014.884193.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank IOL Chemicals and Pharmaceuticals Limited, Ludhiana, India, for ibuprofen, Lubrizol Corporation, USA, for different grades of carbopols and Colorcon Asia Pvt. Limited, India, for different grades of HPMC. Authors are thankful to B.N. University, Udaipur, Rajasthan, for providing necessary financial support.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, experiments, writing (original draft), CU; editing and review, PP, AD, and KKU; in silico work, VV; writing review, editing, and supervision, Meenakshi Bharkatiya.

Corresponding author

Correspondence to Meenakshi Bharkatiya.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, C., D’Souza, A., Patel, P. et al. Inclusion Complex of Ibuprofen-β-Cyclodextrin Incorporated in Gel for Mucosal Delivery: Optimization Using an Experimental Design. AAPS PharmSciTech 24, 100 (2023). https://doi.org/10.1208/s12249-023-02534-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02534-7

Keywords

Navigation