Log in

Chitosan-Coated Liposomes: The Strategy to Reduce Intestinal Toxicity and Improve Bioavailability of Oral Vinorelbine

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In recent years, the oral administration of vinorelbine has gradually replaced intravenous administration in the treatment of several types of tumors. Even though the risk of phlebitis is avoided with oral administration, oral vinorelbine is still not a highly patient-compliant route due to the severe gastrointestinal toxicity. Vinorelbine-loaded liposomes with high encapsulation efficiency and suitable particle size were prepared using the ammonium sulfate gradient method. Chitosan-coated liposomes showed the slowest in vitro release compared to uncoated liposomes and vinorelbine solution. No damage was observed in the intestinal epithelial cells of mice orally administered with coated vinorelbine liposomes due to the low presence of the free drug in the gastrointestinal tract and the LD50 was increased from 129.83 to 182.25 mg/kg compared to oral vinorelbine solution. In addition, the positive surface potential of chitosan-coating endowed liposomes with mucosal adhesive function, delaying the time to reach the peak plasma concentration of vinorelbine from 1 to 4 h after administration. And bioavailability was increased to 2.1-fold compared to vinorelbine solution. In short, a new strategy to address the severe gastrointestinal side effects of oral vinorelbine has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bartsch V. Oral vinorelbine: pharmacology and results in the treatment of non-small cell lung cancer and breast cancer. Onkologie. 2006;29:1–28. https://doi.org/10.1159/000091889.

    Article  CAS  PubMed  Google Scholar 

  2. Gebbia V, Puozzo C. Oral versus intravenous vinorelbine: clinical safety profile. Expert Opin Drug Saf. 2005;4(5):915–28. https://doi.org/10.1517/14740338.4.5.915.

    Article  CAS  PubMed  Google Scholar 

  3. Lesueur P, Martel-Laffay I, Escande A, Kissel M, Locher C, Gervais R, et al. Oral vinorelbine-based concomitant chemoradiotherapy in unresectable stage III non-small cell lung cancer: a systematic review. Expert Rev Anticancer Ther. 2018;18(11):1159–65. https://doi.org/10.1080/14737140.2018.1518714.

    Article  CAS  PubMed  Google Scholar 

  4. Urso R, Nencini C, Giorgi G, Fiaschii AI. Chemotherapy-induced myelosuppression by Vinorelbine: a comparison between different dose schedules by simulation. Eur Rev Med Pharmacol Sci. 2007;11(6):413–7.

    CAS  PubMed  Google Scholar 

  5. Yang S-H, Lin C-C, Lin Z-Z, Tseng Y-L, Hong R-L. A phase I and pharmacokinetic study of liposomal vinorelbine in patients with advanced solid tumor. Invest New Drugs. 2012;30(1):282–9. https://doi.org/10.1007/s10637-010-9522-3.

    Article  CAS  PubMed  Google Scholar 

  6. Bonneterre J, Penel N. Vinorelbine in breast cancer. Expert Opin Pharmacother. 2008;9(16):2901–10. https://doi.org/10.1517/14656566.9.16.2901.

    Article  CAS  PubMed  Google Scholar 

  7. Wang T, Shen L, Zhang Z, Li H, Huang R, Zhang Y, et al. A novel core-shell lipid nanoparticle for improving oral administration of water soluble chemotherapeutic agents: inhibited intestinal hydrolysis and enhanced lymphatic absorption. Drug Delivery. 2017;24(1):1565–73. https://doi.org/10.1080/10717544.2017.1386730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fricker G, Kromp T, Wendel A, Blume A, Zirkel J, Rebmann H, et al. Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res. 2010;27(8):1469–86. https://doi.org/10.1007/s11095-010-0130-x.

    Article  CAS  PubMed  Google Scholar 

  9. He HS, Lu Y, Qi JP, Zhu QG, Chen ZJ, Wu W. Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B. 2019;9(1):36–48. https://doi.org/10.1016/j.apsb.2018.06.005.

    Article  PubMed  Google Scholar 

  10. Werle M, Takeuchi H, Bernkop-Schnurch A. Modified chitosans for oral drug delivery. J Pharm Sci. 2009;98(5):1643–56. https://doi.org/10.1002/jps.21550.

    Article  CAS  PubMed  Google Scholar 

  11. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010;62(1):59–82. https://doi.org/10.1016/j.addr.2009.11.009.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang H, Wang Z-y, Gong W, Li Z-p, Mei X-g, Lv W-l. Development and characteristics of temperature-sensitive liposomes for vinorelbine bitartrate. International Journal of Pharmaceutics. 2011;414(1):56–62. https://doi.org/10.1016/j.ijpharm.2011.05.013.

  13. Nguyen TX, Huang L, Liu L, Abdalla AME, Gauthier M, Yang G. Chitosan-coated nano-liposomes for the oral delivery of berberine hydrochloride. Journal of Materials Chemistry B. 2014;2(41):7149–59. https://doi.org/10.1039/c4tb00876f.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao Y, Ren W, Zhong T, Zhang S, Huang D, Guo Y, et al. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J Control Release. 2016;222:56–66. https://doi.org/10.1016/j.jconrel.2015.12.006.

    Article  CAS  PubMed  Google Scholar 

  15. Ding N, Wang YX, Wang XL, Chu W, Yin T, Gou JX, et al. Improving plasma stability and antitumor effect of gemcitabine via PEGylated liposome prepared by active drug loading. Journal of Drug Delivery Science and Technology. 2020;57. https://doi.org/10.1016/j.jddst.2020.101538.

  16. Yang WQ, Yang ZM, Fu JR, Guo MR, Sun BJ, Wei W, et al. The influence of trap** agents on the antitumor efficacy of irinotecan liposomes: head-to-head comparison of ammonium sulfate, sulfobutylether–cyclodextrin and sucrose octasulfate. Biomaterials Science. 2019;7(1):419–28. https://doi.org/10.1039/c8bm01175c.

    Article  CAS  Google Scholar 

  17. Biruss B, Dietl R, Valenta C. The influence of selected steroid hormones on the physicochemical behaviour of DPPC liposomes. Chem Phys Lipid. 2007;148(2):84–90. https://doi.org/10.1016/j.chemphyslip.2007.04.009.

    Article  CAS  Google Scholar 

  18. Soni NK, Sonali LJ, Singh A, Mangla B, Neupane YR, Kohli K. Nanostructured lipid carrier potentiated oral delivery of raloxifene for breast cancer treatment. Nanotechnology. 2020;31(47). https://doi.org/10.1088/1361-6528/abaf81.

  19. Hu S, Niu M, Hu F, Lu Y, Qi J, Yin Z, et al. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media. Int J Pharm. 2013;441(1):693–700. https://doi.org/10.1016/j.ijpharm.2012.10.025.

    Article  CAS  PubMed  Google Scholar 

  20. Liu W, Ye A, Liu W, Liu C, Han J, Singh H. Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chem. 2015;175:16–24. https://doi.org/10.1016/j.foodchem.2014.11.108.

    Article  CAS  PubMed  Google Scholar 

  21. Kokkona M, Kallinteri P, Fatouros D, Antimisiaris SG. Stability of SUV liposomes in the presence of cholate salts and pancreatic lipases: effect of lipid composition. Eur J Pharm Sci. 2000;9(3):245–52. https://doi.org/10.1016/S0928-0987(99)00064-0.

    Article  CAS  PubMed  Google Scholar 

  22. Yuan H, Chen C-Y, Chai G-h, Du Y-Z, Hu F-Q. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol Pharm. 2013;10(5):1865–73. https://doi.org/10.1021/mp300649z.

    Article  CAS  PubMed  Google Scholar 

  23. Meza-Junco J, Sawyer MB. Drug exposure: still an excellent biomarker. Biomark Med. 2009;3(6):723–31. https://doi.org/10.2217/bmm.09.58.

    Article  CAS  PubMed  Google Scholar 

  24. Beckmann G, Fietkau R, Huber RM, Kleine P, Schmidt M, Semrau S, et al. Oral vinorelbine and cisplatin with concomitant radiotherapy in stage III non-small cell lung cancer (NSCLC): A feasibility study. Onkologie. 2006;29(4):137–42. https://doi.org/10.1159/000092062.

    Article  CAS  PubMed  Google Scholar 

  25. Drummond DC, Noble CO, Guo ZX, Hayes ME, Park JW, Ou CJ, et al. Improved pharmacokinetics and efficacy of a highly stable nanoliposomal vinorelbine. J Pharmacol Exp Ther. 2009;328(1):321–30. https://doi.org/10.1124/jpet.108.141200.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou F, Xu T, Zhao Y, Song H, Zhang L, Wu X, et al. Chitosan-coated liposomes as delivery systems for improving the stability and oral bioavailability of acteoside. Food Hydrocolloids. 2018;83:17–24. https://doi.org/10.1016/j.foodhyd.2018.04.040.

    Article  CAS  Google Scholar 

  27. Han H-K, Shin H-J, Ha DH. Improved oral bioavailability of alendronate via the mucoadhesive liposomal delivery system. Eur J Pharm Sci. 2012;46(5):500–7. https://doi.org/10.1016/j.ejps.2012.04.002.

    Article  CAS  PubMed  Google Scholar 

  28. Daeihamed M, Dadashzadeh S, Haeri A, Akhlaghi MF. Potential of liposomes for enhancement of oral drug absorption. Curr Drug Deliv. 2017;14(2):289–303. https://doi.org/10.2174/1567201813666160115125756.

    Article  CAS  PubMed  Google Scholar 

  29. Karamanidou T, Bourganis V, Kammona O, Kiparissides C. Lipid-based nanocarriers for the oral administration of biopharmaceutics. Nanomedicine. 2016;11(22):3009–32. https://doi.org/10.2217/nnm-2016-0265.

    Article  CAS  PubMed  Google Scholar 

  30. Pereira de Sousa I, Bernkop-Schnürch A. Pre-systemic metabolism of orally administered drugs and strategies to overcome it. Journal of Controlled Release. 2014;192:301–9. https://doi.org/10.1016/j.jconrel.2014.08.004.

  31. Topletz AR, Dennison JB, Barbuch RJ, Hadden CE, Hall SD, Renbarger JL. The relative contributions of CYP3A4 and CYP3A5 to the metabolism of vinorelbine. Drug Metab Dispos. 2013;41(9):1651–61. https://doi.org/10.1124/dmd.113.051094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Netsomboon K, Bemkop-Schnurch A. Mucoadhesive vs. mucopenetrating particulate drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2016;98:76–89. https://doi.org/10.1016/j.ejpb.2015.11.003.

  33. Prego C, Torres D, Alonso MJ. The potential of chitosan for the oral administration of peptides. Expert Opin Drug Deliv. 2005;2(5):843–54. https://doi.org/10.1517/17425247.2.5.843.

    Article  CAS  PubMed  Google Scholar 

  34. Takeuchi H, Yamamoto H, Niwa T, Hino T, Kawashima Y. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm Res. 1996;13(6):896–901. https://doi.org/10.1023/a:1016009313548.

    Article  CAS  PubMed  Google Scholar 

  35. Liu YH, Yang T, Wei SJ, Zhou CM, Lan Y, Cao AC, et al. Mucus adhesion- and penetration-enhanced liposomes for paclitaxel oral delivery. Int J Pharm. 2018;537(1–2):245–56. https://doi.org/10.1016/j.ijpharm.2017.12.044.

    Article  CAS  PubMed  Google Scholar 

  36. Manconi M, Nácher A, Merino V, Merino-Sanjuan M, Manca ML, Mura C, et al. Improving oral bioavailability and pharmacokinetics of liposomal metformin by glycerolphosphate–chitosan microcomplexation. AAPS PharmSciTech. 2013;14(2):485–96. https://doi.org/10.1208/s12249-013-9926-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schipper NG, Olsson S, Hoogstraate JA, deBoer AG, Varum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm Res. 1997;14(7):923–9. https://doi.org/10.1023/a:1012160102740.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by PhD Research Startup Foundation of Liaoning Province (2020BS-128), National Key R&D Program of China (No. 2020YFE0201700), National Mega-project for Innovative Drugs (No.2019ZX09721001), Liaoning Revitalization Talents Program (XLYC1908031), and National Natural Science Foundation of China (81673378).

Author information

Authors and Affiliations

Authors

Contributions

Chen Guo: acquisition, analysis, interpretation, and drafting the work; **chun Zhu: acquisition, analysis, and interpretation; Haoyang Yuan: acquisition, analysis; Haoyu Liu: acquisition, analysis; Tian Yin: analysis, interpretation; Yu Zhang: analysis, interpretation; Haibing He: analysis, interpretation; **gxin Gou: design of the work, analysis, interpretation, and drafting the work. **ng Tang: design of the work, analysis, interpretation, and drafting the work.

Corresponding authors

Correspondence to **gxin Gou or **ng Tang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Zhu, X., Yuan, H. et al. Chitosan-Coated Liposomes: The Strategy to Reduce Intestinal Toxicity and Improve Bioavailability of Oral Vinorelbine. AAPS PharmSciTech 23, 163 (2022). https://doi.org/10.1208/s12249-022-02308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02308-7

KEY WORDS

Navigation