Log in

Multifunctional Role of Silica in Pharmaceutical Formulations

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Due to the high surface area, adjustable surface and pore structures, and excellent biocompatibility, nano- and micro-sized silica have certainly attracted the attention of many researchers in the medical fields. This review focuses on the multifunctional roles of silica in different pharmaceutical formulations including solid preparations, liquid drugs, and advanced drug delivery systems. For traditional solid preparations, it can improve compactibility and flowability, promote disintegration, adjust hygroscopicity, and prevent excessive adhesion. As for liquid drugs and preparations, like volatile oil, ethers, vitamins, and self-emulsifying drug delivery systems, silica with adjustable pore structures is a good adsorbent for solidification. Also, silica with various particle sizes, surface characteristics, pore structure, and surface modification controlled by different synthesis methods has gained wide attention owing to its unparalleled advantages for drug delivery and disease diagnosis. We also collate the latest pharmaceutical applications of silica sorted out by formulations. Finally, we point out the thorny issues for application and survey future trends pertaining to silica in an effort to provide a comprehensive overview of its future development in the medical fields.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hyde EDER, Seyfaee A, Neville F, Moreno-Atanasio R. Colloidal silica particle synthesis and future industrial manufacturing pathways: a review. Ind Eng Chem Res. 2016;55(33):8891–913. https://doi.org/10.1021/acs.iecr.6b01839.

    Article  CAS  Google Scholar 

  2. Singh P, Srivastava S, Singh SK. Nanosilica: Recent progress in synthesis, functionalization, biocompatibility, and biomedical applications. ACS Biomater Sci Eng. 2019;5(10):4882–98. https://doi.org/10.1021/acsbiomaterials.9b00464.

    Article  CAS  PubMed  Google Scholar 

  3. Majumder J, Taratula O, Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv Drug Deliv Rev. 2019;144:57–77. https://doi.org/10.1016/j.addr.2019.07.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Croissant JG, Fatieiev Y, Khashab NM. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater. 2017;29(9) https://doi.org/10.1002/adma.201604634.

  5. Huang R, Shen Y-W, Guan Y-Y, Jiang Y-X, Wu Y, Rahman K, Zhang LJ, Liu HJ, Luan X. Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater. 2020;116:1–15. https://doi.org/10.1016/j.actbio.2020.09.009.

    Article  CAS  PubMed  Google Scholar 

  6. Jonat S, Hasenzahl S, Drechsler M, Albers P, Wagner KG, Schmidt PC. Investigation of compacted hydrophilic and hydrophobic colloidal silicon dioxides as glidants for pharmaceutical excipients. Powder Technol. 2004;141(1-2):31–43. https://doi.org/10.1016/j.powtec.2004.01.020.

    Article  CAS  Google Scholar 

  7. Wang J, Liu S, Zhang C, Xu H, Yang X. Synthesis and applications of chiral nano-silica. Progress in Chemistry. 2011;23(4):669–78.

    CAS  Google Scholar 

  8. Knopp D, Tang D, Niessner R. Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal Chim Acta. 2009;647(1):14–30. https://doi.org/10.1016/j.aca.2009.05.037.

    Article  CAS  PubMed  Google Scholar 

  9. Ab Rahman I, Padavettan V. Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites-a review. J Nanomater. 2012;2012:1–15. https://doi.org/10.1155/2012/132424.

    Article  CAS  Google Scholar 

  10. Li L, Wang W, Tang J, Wang Y, Liu J, Huang L, Wang Y, Guo F, Wang J, Shen W, Belfiore LA. Classification, synthesis, and application of luminescent silica nanoparticles: a review. Nanoscale Res Lett. 2019;14:190. https://doi.org/10.1186/s11671-019-3006-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma J, Polizos G. Hollow silica particles: recent progress and future perspectives. Nanomaterials. 2020;10(8) https://doi.org/10.3390/nano10081599.

  12. Diaz de Grenu B, de los Reyes R, Costero AM, Amoros P, Vicente Ros-Lis J. Recent progress of microwave-assisted synthesis of silica materials. Nanomaterials. 2020;10(6) https://doi.org/10.3390/nano10061092.

  13. Clara Goncalves M. Sol-gel silica nanoparticles in medicine: a natural choice. Design, Synthesis and Products. Molecules. 2018;23(8) https://doi.org/10.3390/molecules23082021.

  14. Alyassin Y, Sayed EG, Mehta P, Ruparelia K, Arshad MS, Rasekh M, Shepherd J, Kucuk I, Wilson PB, Singh N, Chang MW, Fatouros DG, Ahmad Z. Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents. Drug Discov Today. 2020;25(8):1513–20. https://doi.org/10.1016/j.drudis.2020.06.006.

    Article  CAS  PubMed  Google Scholar 

  15. Sabio RM, Meneguin AB, dos Santos AM, Monteiro AS, Chorilli M. Exploiting mesoporous silica nanoparticles as versatile drug carriers for several routes of administration. Microporous Mesoporous Mater. 2021;312:110774. https://doi.org/10.1016/j.micromeso.2020.110774.

    Article  CAS  Google Scholar 

  16. Tirapelle M, Volpato S, Santomaso AC. Shear-induced particle segregation in binary mixtures: verification of a percolation theory. Particuology. 2021;57:214–22. https://doi.org/10.1016/j.partic.2021.01.005.

    Article  Google Scholar 

  17. Qu L, Stewart PJ, Hapgood KP, Lakio S, Morton DAV, Zhou QT. Single-step coprocessing of cohesive powder via mechanical dry coating for direct tablet compression. J Pharm Sci. 2017;106(1):159–67. https://doi.org/10.1016/j.xphs.2016.07.017.

    Article  CAS  PubMed  Google Scholar 

  18. Kunnath K, Huang Z, Chen L, Zheng K, Dave R. Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating. Int J Pharm. 2018;543(1-2):288–99. https://doi.org/10.1016/j.ijpharm.2018.04.002.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Li Y, Wu F, Hong Y, Shen L, Lin X, et al. Texture and surface feature-mediated striking improvements on multiple direct compaction properties of Zingiberis Rhizoma extracted powder by coprocessing with nano-silica. Int J Pharm. 2021;603:120703. https://doi.org/10.1016/j.ijpharm.2021.120703.

    Article  CAS  PubMed  Google Scholar 

  20. Li P, Feng B, Jiang H, Han X, Wu ZF, Wang YQ, Lin J, Zhang Y, Yang M, Han L, Zhang D. A novel forming method of traditional Chinese medicine dispersible tablets to achieve rapid disintegration based on the powder modification principle. Sci Rep. 2018;8:11. https://doi.org/10.1038/s41598-018-28734-x.

    Article  CAS  Google Scholar 

  21. Lihua C, Tiannyu S, Yao W, Yongmei G. lmproving hygroscopicity of fermented Cordyceps powder based on particle design technology of traditional Chinese medicine. Zhongguo Zhong Yao Za Zhi. China Journal of Chinese Materia Medica. 2019;44(08):1558–63. https://doi.org/10.19540/j.cnki.cjcmm.20190116.004.

  22. **ghua J, Yuan X, Fei W, Jialiang H, Lijie Z, Jiquan Z. Preparation of Periploca sepium periplosides tablets by optimizing powder direct compression process based on response surface methodology. Acad J Shanghai Univ Tradit Chin Med. 2021;35(02):76–83. https://doi.org/10.16306/j.1008-861x.2021.02.013.

    Article  Google Scholar 

  23. Paul S, Sun CC. Modulating sticking propensity of pharmaceuticals through excipient selection in a direct compression tablet formulation. Pharm Res. 2018;35(6):10. https://doi.org/10.1007/s11095-018-2396-3.

    Article  CAS  Google Scholar 

  24. Bin Ruzaidi AF, Mandal UK, Chatterjee B. Glidant effect of hydrophobic and hydrophilic nanosilica on a cohesive powder: comparison of different flow characterization techniques. Particuology. 2017;31:69–79. https://doi.org/10.1016/j.partic.2016.04.006.

    Article  CAS  Google Scholar 

  25. Shahba AAW, Ahmed AR, Alanazi FK, Mohsin K, Abdel-Rahman SI. Multi-layer self-nanoemulsifying pellets: an innovative drug delivery system for the poorly water-soluble drug cinnarizine. AAPS PharmSciTech. 2018;19(5):2087–102. https://doi.org/10.1208/s12249-018-0990-7.

    Article  CAS  PubMed  Google Scholar 

  26. Chen L, Ding X, He Z, Huang Z, Kunnath KT, Zheng K, Davé RN. Surface engineered excipients: I. improved functional properties of fine grade microcrystalline cellulose. Int J Pharm. 2018;536(1):127–37. https://doi.org/10.1016/j.ijpharm.2017.11.060.

    Article  CAS  PubMed  Google Scholar 

  27. Capece M, Huang Z, Dave R. Insight into a novel strategy for the design of tablet formulations intended for direct compression. J Pharm Sci. 2017;106(6):1608–17. https://doi.org/10.1016/j.xphs.2017.02.033.

    Article  CAS  PubMed  Google Scholar 

  28. Chen L, He Z, Kunnath K, Zheng K, Kim S, Davé RN. Fine grade engineered microcrystalline cellulose excipients for direct compaction: assessing suitability of different dry coating processes. Eur J Pharm Sci. 2020;151:105408. https://doi.org/10.1016/j.ejps.2020.105408.

    Article  CAS  PubMed  Google Scholar 

  29. Lia R, Xuno G. Tablets, formulations and methods for low melting point active ingredients. WO2020092352, 2020.

  30. Sun A. Sodium phenylbutyrate tablet composition with good anti-hygroscopic property and its preparation method. CN107789330, 2018.

  31. Sun L, Zhang W, Liu X. Moisture-proof and anti-sticking agent for plant extract tablet and application method thereof. CN107714668, 2018.

  32. Andrews CD, Kellstein DE, Kinter KS, Shaw BR. Novel ibuprofen and acetaminophen composition. WO2020263947, 2020.

  33. Hu R, Peng C, **ao X, Li Y. Solid dispersion containing fermented Cordyceps sinensis fungus powder (Cs-4), and preparation method of its tablet. CN108245490, 2018.

  34. Hentzschel CM, Alnaief M, Smirnova I, Sakmann A, Leopold CS. Tableting properties of silica aerogel and other silicates. Drug Dev Ind Pharm. 2012;38(4):462–7. https://doi.org/10.3109/03639045.2011.611806.

    Article  CAS  PubMed  Google Scholar 

  35. Huang Z, Scicolone JV, Han X, Dave RN. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating. Int J Pharm. 2015;478(2):447–55. https://doi.org/10.1016/j.ijpharm.2014.11.068.

    Article  CAS  PubMed  Google Scholar 

  36. Tanimura S, Tahara K, Takeuchi H. Spray-dried composite particles of erythritol and porous silica for orally disintegrating tablets prepared by direct tableting. Powder Technol. 2015;286:444–50. https://doi.org/10.1016/j.powtec.2015.08.011.

    Article  CAS  Google Scholar 

  37. Raymond C Rowe, Paul J Sheskey, Marian E Quinn. Handbook of Pharmaceutical Excipients. 4th ed. Pharmaceutical Press and American Pharmacists Association Publishing; 2009.

  38. Radi S, Tighadouini S, Bacquet M, Degoutin S, Janus L, Mabkhot YN. Fabrication and covalent modification of highly chelated hybrid material based on silica-bipyridine framework for efficient adsorption of heavy metals: isotherms, kinetics and thermodynamics studies. RSC Adv. 2016;6(86):82505–14. https://doi.org/10.1039/c6ra14349k.

    Article  CAS  Google Scholar 

  39. Yu J, Le Y, Cheng B. Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. RSC Adv. 2012;2(17):6784–91. https://doi.org/10.1039/c2ra21017g.

    Article  CAS  Google Scholar 

  40. Jesionowski T, Ciesielczyk F, Krysztafkiewicz A. Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media. Mater Chem Phys. 2010;119(1-2):65–74. https://doi.org/10.1016/j.matchemphys.2009.07.034.

    Article  CAS  Google Scholar 

  41. Ridaoui H, Donnet J-B, Balard H, Kellou H, Hamdi B, Barthel H, Gottschalk-Gaudig T, Legrand AP. Silane modified fumed silicas and their behaviours in water: influence of grafting ratio and temperature. Colloids Surf A Physicochem Eng Asp. 2008;330(1):80–5. https://doi.org/10.1016/j.colsurfa.2008.07.053.

    Article  CAS  Google Scholar 

  42. Jiang J, Cao J, Wang W, Xue J. How silanization influences aggregation and moisture sorption behaviours of silanized silica: analysis of porosity and multilayer moisture adsorption. R Soc Open Sci. 2018;5(6) https://doi.org/10.1098/rsos.180206.

  43. Chen LH, Shi TN, Wu Y, Guan YM. Improving hygroscopicity of fermented Cordyceps powder based on particle design technology of traditional Chinese medicine. Zhongguo Zhong Yao Za Zhi. 2019;44(8):1558–63. https://doi.org/10.19540/j.cnki.cjcmm.20190116.004.

    Article  PubMed  Google Scholar 

  44. Dingkun Z, Han L, Chunfeng Q, Junzhi L, Shuang H, Juan H, et al. Research on micro-silica gel used for powder modification of Angelicae Dahuricae Radix extract and its mechanism of promoting disintegration of YuanhuZhitong DispersibleTablets. Chin Tradit Herb Drugs. 2012;43(12):2372–6.

    Google Scholar 

  45. Jallo LJ, Dave RN. Explaining electrostatic charging and flow of surface-modified acetaminophen powders as a function of relative humidity through surface energetics. J Pharm Sci. 2015;104(7):2225–32. https://doi.org/10.1002/jps.24479.

    Article  CAS  PubMed  Google Scholar 

  46. **ali KC, Shinbrot T, Hammond SV, Muzzio FJ. An observed correlation between flow and electrical properties of pharmaceutical blends. Powder Technol. 2009;192(2):157–65. https://doi.org/10.1016/j.powtec.2008.12.012.

    Article  CAS  Google Scholar 

  47. **nmeng C, Hongguang W. Silicon dioxide used as antistatic agents in powder preparation. Chin J Modern Appl Pharm. 2011;28(09):839–41. https://doi.org/10.13748/j.cnki.issn1007-7693.2011.09.002.

    Article  Google Scholar 

  48. Jonat S, Albers P, Gray A, Schmidt PC. Investigation of the glidant properties of compacted colloidal silicon dioxide by angle of repose and X-ray photoelectron spectroscopy. Eur J Pharm Biopharm. 2006;63(3):356–9. https://doi.org/10.1016/j.ejpb.2005.11.005.

    Article  CAS  PubMed  Google Scholar 

  49. Das S, Larson I, Young P, Stewart P. Surface energy changes and their relationship with the dispersibility of salmeterol xinafoate powders for inhalation after storage at high RH. Eur J Pharm Sci. 2009;38(4):347–54. https://doi.org/10.1016/j.ejps.2009.08.007.

    Article  CAS  PubMed  Google Scholar 

  50. Castellanos A. The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv Phys. 2005;54(4):263–376. https://doi.org/10.1080/17461390500402657.

    Article  CAS  Google Scholar 

  51. Mueller A-K, Ruppel J, Drexel C-P, Zimmermann I. Precipitated silica as flow regulator. Eur J Pharm Sci. 2008;34(4-5):303–8. https://doi.org/10.1016/j.ejps.2008.05.003.

    Article  CAS  Google Scholar 

  52. Jaipakdee N, Tabboon P, Limpongsa E. Application of a liquisolid technique to cannabis sativa extract compacts: effect of liquid vehicles on the dissolution enhancement and stability of cannabinoids. Int J Pharm. 2022;612:121277. https://doi.org/10.1016/j.ijpharm.2021.121277.

    Article  CAS  PubMed  Google Scholar 

  53. Jonat S, Hasenzahl S, Gray A, Schmidt PC. Mechanism of glidants: investigation of the effect of different colloidal silicon dioxide types on powder flow by atomic force and scanning electron microscopy. J Pharm Sci. 2004;93(10):2635–44. https://doi.org/10.1002/jps.20172.

    Article  CAS  PubMed  Google Scholar 

  54. Abe H, Yasui S, Kuwata A, Takeuchi H. Improving powder flow properties of a direct compression formulation using a two-step glidant mixing process. Chem Pharm Bull. 2009;57(7):647–52. https://doi.org/10.1248/cpb.57.647.

    Article  CAS  Google Scholar 

  55. Majerova D, Kulaviak L, Ruzicka M, Stepanek F, Zamostny P. Effect of colloidal silica on rheological properties of common pharmaceutical excipients. Eur J Pharm Biopharm. 2016;106:2–8. https://doi.org/10.1016/j.ejpb.2016.04.025.

    Article  CAS  PubMed  Google Scholar 

  56. Sattary M, Amini J, Hallaj R. Antifungal activity of the lemongrass and clove oil encapsulated in mesoporous silica nanoparticles against wheat’s take-all disease. Pestic Biochem Physiol. 2020;170:104696. https://doi.org/10.1016/j.pestbp.2020.104696.

    Article  CAS  PubMed  Google Scholar 

  57. Rajkumar V, Gunasekaran C, Dharmaraj J, Chinnaraj P, Paul CA, Kanithachristy I. Structural characterization of chitosan nanoparticle loaded with Piper nigrum essential oil for biological efficacy against the stored grain pest control. Pestic Biochem Physiol. 2020;166:104566. https://doi.org/10.1016/j.pestbp.2020.104566.

    Article  CAS  PubMed  Google Scholar 

  58. Caden MB, Preston GM, Van der Hoorn RAL, Flanagan NA, Townley HE, Thompson IP. Enhancing cinnamon essential oil activity by nanoparticle encapsulation to control seed pathogens. Ind Crop Prod. 2018;124:755–64. https://doi.org/10.1016/j.indcrop.2018.08.043.

    Article  CAS  Google Scholar 

  59. Wang S, Jiang D, Zhou Z, Shen Y, Jiang L. A novel photothermo-responsive nanocarrier for the controlled release of low-volatile fragrances. RSC Adv. 2020;10(25):14867–76. https://doi.org/10.1039/c9ra10662f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Showler AT, Dorsey BN, Caesar RM. Lethal effects of a silica gel plus thyme oil (EcoVia) dust and aqueous suspensions on Amblyomma americanum (Ixodida: Ixodidae) Larvae and Nymphs. J Med Entomol. 2020;57(5):1516–24. https://doi.org/10.1093/jme/tjaa054.

    Article  CAS  PubMed  Google Scholar 

  61. Kneievic NZ, Ilic N, Dokic V, Petrovic R, Janackovic D. Mesoporous silica and organosilica nanomaterials as UV-blocking agents. ACS Appl Mater Interfaces. 2018;10(24):20231–6. https://doi.org/10.1021/acsami.8b04635.

    Article  CAS  Google Scholar 

  62. Hu J, Tao L, Deng WJ, Liu LQ. Fabrication and sustained-release property of vinyl silica hollow spheres as a delivery system for aroma compounds. Flavour Fragr J. 2021;36(1):55–63. https://doi.org/10.1002/ffj.3616.

    Article  CAS  Google Scholar 

  63. Gui-lin R, Gang K, Qin Z, Rui H, Li-yun Z, Qing-rong P, et al. Study on volatile oil of Citri Reticulatae Pericarpium and Citri Reticulatae Pericarpium Viride solidified by silica 350FCP. Chin Tradit Herb Drugs. 2021;52(05):1323–34.

    Google Scholar 

  64. Gao F, Zhou HJ, Shen ZC, Zhu GW, Hao L, Chen HY, Xu H, Zhou X. Long-lasting anti-bacterial activity and bacteriostatic mechanism of tea tree oil adsorbed on the amino-functionalized mesoporous silica-coated by PAA. Colloids Surf B Biointerfaces. 2020;188:110784. https://doi.org/10.1016/j.colsurfb.2020.110784.

    Article  CAS  PubMed  Google Scholar 

  65. Belostozky A, Bretler S, Kolitz-Domb M, Grinberg I, Margel S. Solidification of oil liquids by encapsulation within porous hollow silica microspheres of narrow size distribution for pharmaceutical and cosmetic applications. Mater Sci Eng C-Mater Biol Appl. 2019;97:760–7. https://doi.org/10.1016/j.msec.2018.12.093.

    Article  CAS  PubMed  Google Scholar 

  66. ** L, Teng J, Hu LH, Lan XT, Xu Y, Sheng J, Song Y, Wang M. Pepper fragrant essential oil (PFEO) and functionalized MCM-41 nanoparticles: formation, characterization, and bactericidal activity. J Sci Food Agric. 2019;99(11):5168–75. https://doi.org/10.1002/jsfa.9776.

    Article  CAS  PubMed  Google Scholar 

  67. Do YS, Cho KH, Kim HC, Kwon JY, Kim ST, Park SY, Kim YH, Kim JE, Park YJ, Maeng HJ, Jang DJ. Preparation of silica microparticles as volatile material carrier and their sustained-release property. J Nanosci Nanotechnol. 2019;19(2):1188–91. https://doi.org/10.1166/jnn.2019.15919.

    Article  CAS  PubMed  Google Scholar 

  68. Juanjuan T, Yating Y, Lijie Z, Yi F, Youjie W, Lan S. Mesoporous silica solidifying volatile oil from Bupleuri radix and forsythiae fructus and its micromeritic properties. Acta Pharm Sin. 2019;54(08):1493–501. https://doi.org/10.16438/j.0513-4870.2019-0235.

    Article  Google Scholar 

  69. Soepper U, Daniels R, Hoffmann A, Fischer JT, Machinek A, Goetz MR. A solid mucoadhesive composition. WO2021228358, 2021.

  70. Arumugam O, Venkatachalam N. Solid pharmaceutical dosage forms of vitamin K1 and process of preparation thereof. US20210121407, 2021.

  71. Aboshyan-Sorgho LB, Francois; Desplantier-Giscard, Delphine; Morin, Michel; Pandarus, Valerica. Tunable process for silica capsules/spheres preparation. WO2020077451, 2020.

  72. Meher JG, Dixit S, Singh Y, Pawar VK, Konwar R, Saklani R, et al. Paclitaxel-loaded colloidal silica and TPGS-based solid self-emulsifying system interferes Akt/mTOR pathway in MDA-MB-231 and demonstrates anti-tumor effect in syngeneic mammary tumors. AAPS PharmSciTech. 2020;21(8) https://doi.org/10.1208/s12249-020-01855-1.

  73. Snela A, Jadach B, Froelich A, Skotnicki M, Milczewska K, Rojewska M, Voelkel A, Prochaska K, Lulek J. Self-emulsifying drug delivery systems with atorvastatin adsorbed on solid carriers: formulation and in vitro drug release studies. Colloids Surf A Physicochem Eng Asp. 2019;577:281–90. https://doi.org/10.1016/j.colsurfa.2019.05.062.

    Article  CAS  Google Scholar 

  74. Tao C, Yu Y, Chen ZZ, Zhang MX, Liu LL, Liu ZH, Zhang J, Zhang Q, Song H. Effect of mesopores on solidification of sirolimus self-microemulsifying drug delivery system. Chin Chem Lett. 2018;29(12):1849–52. https://doi.org/10.1016/j.cclet.2018.11.022.

    Article  CAS  Google Scholar 

  75. Gumaste SG, Serajuddin ATM. Development of solid SEDDS, VII: Effect of pore size of silica on drug release from adsorbed self-emulsifying lipid-based formulations. Eur J Pharm Sci. 2017;110:134–47. https://doi.org/10.1016/j.ejps.2017.05.014.

    Article  CAS  PubMed  Google Scholar 

  76. Pardhi V, Chavan RB, Thipparaboina R, Thatikonda S, Naidu VGM, Shastri NR. Preparation, characterization, and cytotoxicity studies of niclosamide loaded mesoporous drug delivery systems. Int J Pharm. 2017;528(1-2):202–14. https://doi.org/10.1016/j.ijpharm.2017.06.007.

    Article  CAS  PubMed  Google Scholar 

  77. Quan GL, Niu B, Singh V, Zhou YX, Wu CY, Pan X, Wu C. Supersaturable solid self-microemulsifying drug delivery system: precipitation inhibition and bioavailability enhancement. Int J Nanomedicine. 2017;12:8801–11. https://doi.org/10.2147/ijn.S149717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wos-Latosi K, Garbera K. Pharmaceutical formulation comprising abiraterone acetate. EP3854384,2021.

  79. Nikolakakis I. Self-emulsifying compositions comprising medium chain triglyceride and non-ionic surfactant for weakly ionizable or non-ionizable active pharmaceutical ingredients. WO2019068871, 2019.

  80. Friedman D. Solid self-emuslifying cannabinoid compositions. WO2019135225, 2019.

  81. Singh SK, Verma PRP, Razdan B. Glibenclamide-loaded self-nanoemulsifying drug delivery system: development and characterization. Drug Dev Ind Pharm. 2010;36(8):933–45. https://doi.org/10.3109/03639040903585143.

    Article  CAS  PubMed  Google Scholar 

  82. Shakeel F, Haq N, El-Badry M, Alanazi FK, Alsarra IA. Ultra fine super self-nanoemulsifying drug delivery system (SNEDDS) enhanced solubility and dissolution of indomethacin. J Mol Liq. 2013;180:89–94. https://doi.org/10.1016/j.molliq.2013.01.008.

    Article  CAS  Google Scholar 

  83. Beg S, Katare OP, Saini S, Garg B, Khurana RK, Singh B. Solid self-nanoemulsifying systems of olmesartan medoxomil: formulation development, micromeritic characterization, in vitro and in vivo evaluation. Powder Technol. 2016;294:93–104. https://doi.org/10.1016/j.powtec.2016.02.023.

    Article  CAS  Google Scholar 

  84. Friedl JD, Joergensen AM, Bao L-V, Braun DE, Tribus M, Bernkop-Schnuerch A. Solidification of self-emulsifying drug delivery systems (SEDDS): impact on storage stability of a therapeutic protein. J Colloid Interface Sci. 2021;584:684–97. https://doi.org/10.1016/j.jcis.2020.11.051.

    Article  CAS  PubMed  Google Scholar 

  85. Tan A, Rao S, Prestidge CA. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm Res. 2013;30(12):2993–3017. https://doi.org/10.1007/s11095-013-1107-3.

    Article  CAS  PubMed  Google Scholar 

  86. Oh DH, Kang JH, Kim DW, Lee B-J, Kim JO, Yong CS, Choi HG. Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier. Int J Pharm. 2011;420(2):412–8. https://doi.org/10.1016/j.ijpharm.2011.09.007.

    Article  CAS  PubMed  Google Scholar 

  87. Iosio T, Voinovich D, Grassi M, Pinto JF, Perissutti B, Zacchigna M, Quintavalle U, Serdoz F. Bi-layered self-emulsifying pellets prepared by co-extrusion and spheronization: influence of formulation variables and preliminary study on the in vivo absorption. Eur J Pharm Biopharm. 2008;69(2):686–97. https://doi.org/10.1016/j.ejpb.2007.11.014.

    Article  CAS  PubMed  Google Scholar 

  88. Williams HD, Sassene P, Kleberg K, Calderone M, Igonin A, Jule E, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, Part 3: Understanding supersaturation versus precipitation potential during the in vitro digestion of Type I, II, IIIA, IIIB and IV lipid-based formulations. Pharm Res. 2013;30(12):3059–76. https://doi.org/10.1007/s11095-013-1038-z.

    Article  CAS  PubMed  Google Scholar 

  89. Balani PN, Wong SY, Ng WK, Widjaja E, Tan RBH, Chan SY. Influence of polymer content on stabilizing milled amorphous salbutamol sulphate. Int J Pharm. 2010;391(1-2):125–36. https://doi.org/10.1016/j.ijpharm.2010.02.029.

    Article  CAS  PubMed  Google Scholar 

  90. Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig. 2015;5(3):124–33. https://doi.org/10.4103/2230-973x.160844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Malik MA, Wani MY, Hashim MA. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials. Arab J Chem. 2012;5(4):397–417. https://doi.org/10.1016/j.arabjc.2010.09.027.

    Article  CAS  Google Scholar 

  92. Ferch HK. Industrial synthetic silicas in powder form. In: Bergna HE, editor. Colloid Chemistry of Silica. American Chemical Society; 1994. p. 481-504.

  93. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359(6397):710–2. https://doi.org/10.1038/359710a0.

    Article  CAS  Google Scholar 

  94. Yan W, Xuhan Z, Zhaohua J. Orderd mesoporous materials for biology and medicine. Progress in Chemistry. 2006;10:1345–51.

    Google Scholar 

  95. Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10(3):49. https://doi.org/10.3390/pharmaceutics10030118.

    Article  CAS  Google Scholar 

  96. Lim SW, Jang H-G, Sim H-I, Shin C-H, Kim J-H, Seo G. Preparation of dandelion-type silica spheres and their application as catalyst supports. J Porous Mater. 2014;21(5):797–809. https://doi.org/10.1007/s10934-014-9828-1.

    Article  CAS  Google Scholar 

  97. Rahmani S, Budimir J, Sejalon M, Daurat M, Aggad D, Vives E, et al. Large pore mesoporous silica and organosilica nanoparticles for pepstatin a delivery in breast cancer cells. Molecules. 2019;24(2):9. https://doi.org/10.3390/molecules24020332.

    Article  CAS  Google Scholar 

  98. Abeer MM, Meka AK, Pujara N, Kumeria T, Strounina E, Nunes R, et al. Rationally designed dendritic silica nanoparticles for oral delivery of exenatide. Pharmaceutics. 2019;11(8). 10.3390/pharmaceutics11080418.

  99. Taleghani AS, Nakhjiri AT, Khakzad MJ, Rezayat SM, Ebrahimnejad P, Heydarinasab A, Akbarzadeh A, Marjani A. Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. J Mol Liq. 2021;328:115417. https://doi.org/10.1016/j.molliq.2021.115417.

    Article  CAS  Google Scholar 

  100. Moodley T, Singh M. Current stimuli-responsive mesoporous silica nanoparticles for cancer therapy. Pharmaceutics. 2021;13(1) https://doi.org/10.3390/pharmaceutics13010071.

  101. Mochizuki C, Nakamura J, Nakamura M. Development of non-porous silica nanoparticles towards cancer photo-theranostics. Biomedicines. 2021;9(1) https://doi.org/10.3390/biomedicines9010073.

  102. Isa EDM, Ahmad H, Rahman MBA, Gill MR. Progress in mesoporous silica nanoparticles as drug delivery agents for cancer treatment. Pharmaceutics. 2021;13(2) https://doi.org/10.3390/pharmaceutics13020152.

  103. Abeer MM, Rewatkar P, Qu Z, Talekar M, Kleitz F, Schmid R, Lindén M, Kumeria T, Popat A. Silica nanoparticles: a promising platform for enhanced oral delivery of macromolecules. J Control Release. 2020;326:544–55. https://doi.org/10.1016/j.jconrel.2020.07.021.

    Article  CAS  PubMed  Google Scholar 

  104. Li D, Gao C, Kuang M, Xu M, Wang B, Luo Y, et al. Nanoparticles as drug delivery systems of RNAi in cancer therapy. Molecules. 2021;26(8) https://doi.org/10.3390/molecules26082380.

  105. AbouAitah K, Lojkowski W. Delivery of natural agents by means of mesoporous silica nanospheres as a promising anticancer strategy. Pharmaceutics. 2021;13(2) https://doi.org/10.3390/pharmaceutics13020143.

  106. Kucukturkmen B, Rosenholm JM. Mesoporous Silica Nanoparticles as Carriers for Biomolecules in Cancer Therapy. In: Fontana F, Santos HA, editors. Bio-Nanomedicine for Cancer Therapy 2021. p. 99-120. https://doi.org/10.1007/978-3-030-58174-9_5

  107. Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, et al. Mesoporous silica nanoparticles: properties and strategies for enhancing clinical effect. Pharmaceutics. 2021;13(4) https://doi.org/10.3390/pharmaceutics13040570.

  108. Wu X, Farooq MA, Li TT, Geng TJ, Kutoka PT, Wang B. Cationic chitosan-modified silica nanoparticles for oral delivery of protein vaccine. J Biomed Mater Res A. 2021;109:2111–9. https://doi.org/10.1002/jbm.a.37198.

    Article  CAS  PubMed  Google Scholar 

  109. Gao Y, He Y, Zhang H, Zhang Y, Gao T, Wang JH, et al. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral delivery of protein drugs by overcoming multiple gastrointestinal barriers. J Colloid Interface Sci. 2021;582(Pt A):364–75. https://doi.org/10.1016/j.jcis.2020.08.010.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang Y, **ong M, Ni X, Wang J, Rong H, Su Y, Yu S, Mohammad IS, Leung SSY, Hu H. Virus-mimicking mesoporous silica nanoparticles with an electrically neutral and hydrophilic surface to improve the oral absorption of insulin by breaking through dual barriers of the mucus layer and the intestinal epithelium. ACS Appl Mater Interfaces. 2021;13(15):18077–88. https://doi.org/10.1021/acsami.1c00580.

    Article  CAS  PubMed  Google Scholar 

  111. Hines E, Cheng D, Wu WX, Yu MH, Xu C, Song H, Yu C. Rambutan-like silica nanoparticles at tailored particle sizes for plasmid DNA delivery. J Mater Sci. 2021;56(9):5830–44. https://doi.org/10.1007/s10853-020-05660-w.

    Article  CAS  Google Scholar 

  112. Deng C, Liu YH, Zhou FZ, Wu MY, Zhang Q, Yi DL, Yuan W, Wang Y. Engineering of dendritic mesoporous silica nanoparticles for efficient delivery of water-insoluble paclitaxel in cancer therapy. J Colloid Interface Sci. 2021;593:424–33. https://doi.org/10.1016/j.jcis.2021.02.098.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang T, Liu H, Li L, Guo Z, Song J, Yang X, Wan G, Li R, Wang Y. Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment. Bioact Mater. 2021;6(11):3865–78. https://doi.org/10.1016/j.bioactmat.2021.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kong Y, Li X, Liu X, Pang J, Mu X, Liu W. Galactosylated chitosan modified magnetic mesoporous silica nanoparticles loaded with nedaplatin for the targeted chemo-photothermal synergistic therapy of cancer. J Nanosci Nanotechnol. 2021;21(9):4553–64. https://doi.org/10.1166/jnn.2021.19142.

    Article  CAS  PubMed  Google Scholar 

  115. ** R, Wang J, Gao M, Zhang X. Pollen-like silica nanoparticles as a nanocarrier for tumor targeted and pH-responsive drug delivery. Talanta. 2021;231:122402. https://doi.org/10.1016/j.talanta.2021.122402.

    Article  CAS  PubMed  Google Scholar 

  116. Narayan R, Gadag S, Cheruku SP, Raichur AM, Day CM, Garg S, Manandhar S, Pai KSR, Suresh A, Mehta CH, Nayak Y, Kumar N, Nayak UY. Chitosan-glucuronic acid conjugate coated mesoporous silica nanoparticles: a smart pH-responsive and receptor-targeted system for colorectal cancer therapy. Carbohydr Polym. 2021;261:117893. https://doi.org/10.1016/j.carbpol.2021.117893.

    Article  CAS  PubMed  Google Scholar 

  117. Guo C, Zhang YM, Li YC, Zhang LB, Jiang H, Tao J, Zhu J. Gold nanoparticle-guarded large-pore mesoporous silica nanocomposites for delivery and controlled release of cytochrome c. J Colloid Interface Sci. 2021;589:34–44. https://doi.org/10.1016/j.jcis.2020.12.117.

    Article  CAS  PubMed  Google Scholar 

  118. Ma B, Chen Y, Hu G, Zeng Q, Lv X, Oh DH, Fu X, ** Y. Ovotransferrin antibacterial peptide coupling mesoporous silica nanoparticle as an effective antibiotic delivery system for treating bacterial infection in vivo. ACS Biomater Sci Eng. 2022;8(1):109–18. https://doi.org/10.1021/acsbiomaterials.1c01267.

    Article  CAS  PubMed  Google Scholar 

  119. Liu S, Zhao Y, Shen M, Hao Y, Wu X, Yao Y, Li Y, Yang Q. Hyaluronic acid targeted and pH-responsive multifunctional nanoparticles for chemo-photothermal synergistic therapy of atherosclerosis. J Mater Chem B. 2022;10:562–70. https://doi.org/10.1039/d1tb02000e.

    Article  CAS  PubMed  Google Scholar 

  120. Li Z, Rong L. A homotypic membrane-camouflaged biomimetic nanoplatform with gold nanocrystals for synergistic photothermal/starvation/immunotherapy. ACS Appl Mater Interfaces. 2021;13:23469–80. https://doi.org/10.1021/acsami.1c04305.

    Article  CAS  PubMed  Google Scholar 

  121. Qi XL, Han YD, Liu SJ, Hu HF, Cheng ZZ, Liu TG. NaYF4:Yb/Tm@SiO2-Dox/Cur-CS/OSA nanoparticles with pH and photon responses. Nanotechnology. 2021;32(25) https://doi.org/10.1088/1361-6528/abecba.

  122. Zhang BB, Chen XJ, Fan XD, Zhu JJ, Wei YH, Zheng HS, Zheng HY, Wang BH, Piao JG, Li FZ. Lipid/PAA-coated mesoporous silica nanoparticles for dual-pH-responsive codelivery of arsenic trioxide/paclitaxel against breast cancer cells. Acta Pharmacol Sin. 2021;42(5):832–42. https://doi.org/10.1038/s41401-021-00648-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Miao YL, Feng YC, Bai J, Liu ZY, Zhao XB. Optimized mesoporous silica nanoparticle-based drug delivery system with removable manganese oxide gatekeeper for controlled delivery of doxorubicin. J Colloid Interface Sci. 2021;592:227–36. https://doi.org/10.1016/j.jcis.2021.02.054.

    Article  CAS  PubMed  Google Scholar 

  124. Qin YP, Huang YH, Li M, Ren B, Wang P, Zhong QD, et al. Novel photothermal-responsive sandwich-structured mesoporous silica nanoparticles: synthesis, characterization, and application for controlled drug delivery. J Mater Sci. 2021;56:12412–22. https://doi.org/10.1007/s10853-021-06097-5.

    Article  CAS  Google Scholar 

  125. Lohiya G, Katti DS. Carboxylated chitosan-mediated improved efficacy of mesoporous silica nanoparticle-based targeted drug delivery system for breast cancer therapy. Carbohydr Polym. 2022;277:118822. https://doi.org/10.1016/j.carbpol.2021.118822.

    Article  CAS  PubMed  Google Scholar 

  126. Pandita D, Munjal A, Poonia N, Awasthi R, Kalonia H, Lather V. Albumin-coated mesoporous silica nanoparticles of docetaxel: preparation, characterization, and pharmacokinetic evaluation. Assay Drug Dev Technol. 2021;19:226–36. https://doi.org/10.1089/adt.2020.1039.

    Article  CAS  PubMed  Google Scholar 

  127. Guo J, Chen S, Tian S, Liu K, Ma X, Guo J. A sensitive and quantitative prognosis of C-reactive protein at picogram level using mesoporous silica encapsulated core-shell up-conversion nanoparticle based lateral flow strip assay. Talanta. 2021;230:122335. https://doi.org/10.1016/j.talanta.2021.122335.

    Article  CAS  PubMed  Google Scholar 

  128. Shi H, Lou J, Lin S, Wang Y, Hu Y, Zhang P, Liu Y, Zhang Q. Diatom-like silica-protein nanocomposites for sustained drug delivery of ruthenium polypyridyl complexes. J Inorg Biochem. 2021;221:111489. https://doi.org/10.1016/j.**orgbio.2021.111489.

    Article  CAS  PubMed  Google Scholar 

  129. Wu YX, Zhang DL, Hu XX, Peng RZ, Li JB, Zhang XB, Tan W. Multicolor two-photon nanosystem for multiplexed intracellular imaging and targeted cancer therapy. Angew Chem Int Ed. 2021;60(22):12569–76. https://doi.org/10.1002/anie.202103027.

    Article  CAS  Google Scholar 

  130. Liu X, Yuan Z, Tang Z, Chen Q, Huang J, He L, Chen T. Selenium-driven enhancement of synergistic cancer chemo-/radiotherapy by targeting nanotherapeutics. Biomater Sci. 2021;9:4691–700. https://doi.org/10.1039/d1bm00348h.

    Article  CAS  PubMed  Google Scholar 

  131. Cheng D, Ji Y, Wang B, Wang Y, Tang Y, Fu Y, Xu Y, Qian X, Zhu W. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer. Acta Biomater. 2021;128:435–46. https://doi.org/10.1016/j.actbio.2021.04.006.

    Article  CAS  PubMed  Google Scholar 

  132. He H, Meng S, Li H, Yang Q, Xu Z, Chen X, Sun Z, Jiang B, Li C. Nanoplatform based on GSH-responsive mesoporous silica nanoparticles for cancer therapy and mitochondrial targeted imaging. Mikrochimica acta. 2021;188(5):154. https://doi.org/10.1007/s00604-021-04810-4.

    Article  CAS  PubMed  Google Scholar 

  133. Thakor AS, Razavi M. Controlled nutrient delivery to pancreatic islets using a novel mesoporous silica-based nanoparticle platform. WO2021055575, 2021.

  134. Mou C-Y, Chen Y-P, Wu S-H. Silica-based mesoporous carrier and delivery method of using the same. WO2017023358, 2017.

  135. Unternaehrer J. SNAIL siRNA-loaded mesoporous silica nanoparticles for treatment of ovarian cancer. WO2020028562, 2020.

  136. Wu C-H, Chen Y-P, Wu S-H, Mou C-Y. Surface-modified mesoporous silica nanoparticle for blood-brain barrier penetration,tumor targeting and cancer metastasis treatment, methods of production and uses thereof. US20200345649, 2020.

  137. Wang Z, Gao W, Zhang H. Dual drug delivery system based on targeting nucleolin, preparation method therefor and use thereof. WO2021042451, 2021.

  138. Feiler A. New composition comprising amorphous nanoporous silica particles. WO2021090013, 2021.

  139. Tham HP, Xu K, Lim WQ, Chen H, Venkatraman S, Xu C, et al. Photodynamically active organosilica nanoparticles and medical uses thereof. WO2019112519, 2019.

  140. Shpigelmacher M, Kiselyov A, Kolotilov S, Shvets O, Kardosh M, Oren E. Ultrasound-responsive containers for drug delivery. US20210138218, 2021.

  141. Zhu J, Liu Y, Tan H, Zhang L. Photoresponsive polymer-grafted nanoparticle assembly and its preparation method and application in preparation of light-controlled-release drug. CN109453378, 2019.

  142. Corne G, Thomann J-S. Method for manufacturing mesoporous silica nanoparticles with encapsulated superparamagnetic clusters for use in diagnostic imaging and therapy. WO2019122124, 2019.

  143. Feiler A, Kozlova E, Zhou C, Israelson A, Shoshan-Barmatz V. Empty porous particles for use in treatment, prevention and/or postponement of degeneration of neurodegenerative diseases, neurons and glia. WO2020212418, 2020.

  144. Zink JI, Ruehle B, Horwitz MA, Clemens DL, Clemens B-YL. Pathogen-specific cargo delivery and diagnostic platform based on mesoporous silica nanoparticles. US20190321486, 2019.

  145. Cui X, Woeppel KM. Silica nanoparticle-doped conductive polymer. US20210038773, 2021.

  146. Serrano Marugan M, Munoz Espin D, Rovira del Olmo M, Bernardos Bau A, Galiana Guillem I, Lozano Torres B, et al. Therapeutic nanoparticles to deliver payload molecules to damaged and/or senescent cells. WO2019122448, 2019.

  147. Chen L, Zhou S-F, Su L, Song J. Gas-mediated cancer bioimaging and therapy. ACS Nano. 2019;13(10):10887–917. https://doi.org/10.1021/acsnano.9b04954.

    Article  CAS  PubMed  Google Scholar 

  148. Dong X, Liu H-J, Feng H-Y, Yang S-C, Liu X-L, Lai X, Lu Q, Lovell JF, Chen HZ, Fang C. Enhanced drug delivery by nanoscale integration of a nitric oxide donor to induce tumor collagen depletion. Nano Lett. 2019;19(2):997–1008. https://doi.org/10.1021/acs.nanolett.8b04236.

    Article  CAS  PubMed  Google Scholar 

  149. Pan Q-S, Chen T-T, Nie C-P, Yi J-T, Liu C, Hu Y-L, Chu X. In situ synthesis of ultrathin ZIF-8 film-coated MSNs for codelivering Bcl 2 siRNA and doxorubicin to enhance chemotherapeutic efficacy in drug-resistant cancer cells. ACS Appl Mater Interfaces. 2018;10(39):33070–7. https://doi.org/10.1021/acsami.8b13393.

    Article  CAS  PubMed  Google Scholar 

  150. Guha A, Biswas N, Bhattacharjee K, Sahoo N, Kuotsu K. pH responsive cylindrical MSN for oral delivery of insulin-design, fabrication and evaluation. Drug Deliv. 2016;23(9):3552–61. https://doi.org/10.1080/10717544.2016.1209796.

    Article  CAS  PubMed  Google Scholar 

  151. Qin T, Yan L, Wang X, Lin S, Zeng Q. Glucose-responsive polyelectrolyte complexes based on dendritic mesoporous silica for oral insulin delivery. AAPS PharmSciTech. 2021;22(7):226. https://doi.org/10.1208/s12249-021-02088-6.

    Article  CAS  PubMed  Google Scholar 

  152. Hajizade A, Salmanian AH, Amani J, Ebrahimi F, Arpanaei A. EspA-loaded mesoporous silica nanoparticles can efficiently protect animal model against enterohaemorrhagic E-coli O157: H7. Artif Cell Nanomed Biotechnol. 2018;46:S1067–S75. https://doi.org/10.1080/21691401.2018.1529676.

    Article  CAS  Google Scholar 

  153. Vivero-Escoto JL, Vadarevu H, Juneja R, Schrum LW, Benbow JH. Nanoparticle mediated silencing of tenascin C in hepatic stellate cells: effect on inflammatory gene expression and cell migration. J Mater Chem B. 2019;7(46):7396–405. https://doi.org/10.1039/c9tb01845j.

    Article  CAS  PubMed  Google Scholar 

  154. Rackley L, Stewart JM, Salotti J, Krokhotin A, Shah A, Halman JR, et al. RNA fibers as optimized nanoscaffolds for siRNA coordination and reduced immunological recognition. Adv Funct Mater. 2018;28(48) https://doi.org/10.1002/adfm.201805959.

  155. Xue HY, Yu ZY, Liu Y, Yuan WG, Yang T, You J, He X, Lee RJ, Li L, Xu C. Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma. Int J Nanomedicine. 2017;12:5271–87. https://doi.org/10.2147/ijn.S135306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Islam R, Maeda H, Fang J. Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opin Drug Deliv. 2021:1–14. https://doi.org/10.1080/17425247.2021.1874916.

  157. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–9. https://doi.org/10.1016/j.addr.2012.10.002.

    Article  CAS  PubMed  Google Scholar 

  158. Choi JY, Gupta B, Ramasamy T, Jeong JH, ** SG, Choi HG, Yong CS, Kim JO. PEGylated polyaminoacid-capped mesoporous silica nanoparticles for mitochondria-targeted delivery of celastrol in solid tumors. Colloids Surf B Biointerfaces. 2018;165:56–66. https://doi.org/10.1016/j.colsurfb.2018.02.015.

    Article  CAS  PubMed  Google Scholar 

  159. Rivero-Buceta E, Vidaurre-Agut C, David Vera-Donoso C, Maria Benlloch J, Moreno-Manzano V, Botella P. PSMA-targeted mesoporous silica nanoparticles for selective intracellular delivery of docetaxel in prostate cancer cells. Acs Omega. 2019;4(1):1281–91. https://doi.org/10.1021/acsomega.8b02909.

    Article  CAS  Google Scholar 

  160. Popova M, Trendafilova I, Zgureva D, Kalvachev Y, Boycheva S, Tusar NN, et al. Polymer-coated mesoporous silica nanoparticles for controlled release of the prodrug sulfasalazine. J Drug Deliv Sci Technol. 2018;44:415–20. https://doi.org/10.1016/j.jddst.2018.01.020.

    Article  CAS  Google Scholar 

  161. Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev. 2017;46(19):6024–45. https://doi.org/10.1039/c7cs00219j.

    Article  CAS  PubMed  Google Scholar 

  162. Wong RCH, Ng DKP, Fong W-P, Lo P-C. Encapsulating pH-responsive doxorubicin-phthalocyanine conjugates in mesoporous silica nanoparticles for combined photodynamic therapy and controlled chemotherapy. Chem Eur J. 2017;23(65):16505–15. https://doi.org/10.1002/chem.201703188.

    Article  CAS  PubMed  Google Scholar 

  163. Bhaysar D, Gajjar J, Sawant K. Formulation and development of smart pH responsive mesoporous silica nanoparticles for breast cancer targeted delivery of anastrozole: In vitro and in vivo characterizations. Microporous Mesoporous Mater. 2019;279:107–16. https://doi.org/10.1016/j.micromeso.2018.12.026.

    Article  CAS  Google Scholar 

  164. Fan W, Lu N, Huang P, Liu Y, Yang Z, Wang S, Yu G, Liu Y, Hu J, He Q, Qu J, Wang T, Chen X. Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy. Angew Chem Int Ed. 2017;56(5):1229–33. https://doi.org/10.1002/anie.201610682.

    Article  CAS  Google Scholar 

  165. Liu H-J, Luan X, Feng H-Y, Dong X, Yang S-C, Chen Z-J, et al. Integrated combination treatment using a “Smart” chemotherapy and microRNA delivery system improves outcomes in an orthotopic colorectal cancer model. Adv Funct Mater. 2018;28(28) https://doi.org/10.1002/adfm.201801118.

  166. Sun LJ, Wang DG, Chen Y, Wang LY, Huang P, Li YP, Liu Z, Yao H, Shi J. Core-shell hierarchical mesostructured silica nanoparticles for gene/chemo-synergetic stepwise therapy of multidrug-resistant cancer. Biomaterials. 2017;133:219–28. https://doi.org/10.1016/j.biomaterials.2017.04.028.

    Article  CAS  PubMed  Google Scholar 

  167. Cha BG, Kim J. Functional mesoporous silica nanoparticles for bio-imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(1) https://doi.org/10.1002/wnan.1515.

  168. Kang J, Kim D, Wang J, Han Y, Zuidema JM, Hariri A, et al. Enhanced performance of a molecular photoacoustic imaging agent by encapsulation in mesoporous silicon nanoparticles. Adv Mater. 2018;30(27) https://doi.org/10.1002/adma.201800512.

  169. Chi XQ, Zhang RY, Zhao T, Gong XQ, Wei RX, Yin ZY, Lin H, Li D, Shan H, Gao J. Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma. Nanotechnology. 2019;30(17):10. https://doi.org/10.1088/1361-6528/aaff9e.

    Article  CAS  Google Scholar 

  170. Reffitt DM, Jugdaohsingh R, Thompson RPH, Powell JJ. Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J Inorg Biochem. 1999;76(2):141–7. https://doi.org/10.1016/S0162-0134(99)00126-9.

    Article  CAS  PubMed  Google Scholar 

  171. Gao Y, Wang Y, Fu A, Shi W, Yeo D, Luo KQ, Ow H, Xu C. Tracking mesenchymal stem cell tumor-homing using fluorescent silica nanoparticles. J Mater Chem B. 2015;3(7):1245–53. https://doi.org/10.1039/c4tb01452a.

    Article  CAS  PubMed  Google Scholar 

  172. Cheng J, Ding Q, Wang J, Deng L, Yang L, Tao L, Lei H, Lu S. 5-Azacytidine delivered by mesoporous silica nanoparticles regulates the differentiation of P19 cells into cardiomyocytes. Nanoscale. 2016;8(4):2011–21. https://doi.org/10.1039/c5nr08560h.

    Article  CAS  PubMed  Google Scholar 

  173. Vranikova B, Niederquell A, Ditzinger F, Sklubalova Z, Kuentz M. Mechanistic aspects of drug loading in liquisolid systems with hydrophilic lipid-based mixtures. Int J Pharm. 2020;578:119099. https://doi.org/10.1016/j.ijpharm.2020.119099.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81973490), China; Clinical Research Fund of Shanghai Municipal Health Commission (202140347), China; Natural Science Foundation of Shanghai (20ZR1458400), China; Three-year Action Plan for the Development of Traditional Chinese Medicine of Shanghai Municipal Health Planning Commission (ZY(2018-2020)-CCCX-2001-03), China; Technical Standards Project of Shanghai Science and Technology Innovation Action Plan (20DZ2200900), China; and the Graduate Student Innovation Ability Project of Shanghai University of Traditional Chinese Medicine (Y2021086), China.

Author information

Authors and Affiliations

Authors

Contributions

Yating Gao: conceptualization and writing original draft. Yue Zhang: writing original draft. Yanlong Hong: figure and table design. Fei Wu: information collection and analysis. Youjie Wang: conceptualization and supervision. Lan Shen: formal analysis and reviewing. **ao Lin: conceptualization, writing—reviewing, and supervision.

Corresponding authors

Correspondence to Youjie Wang or **ao Lin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhang, Y., Hong, Y. et al. Multifunctional Role of Silica in Pharmaceutical Formulations. AAPS PharmSciTech 23, 90 (2022). https://doi.org/10.1208/s12249-022-02237-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02237-5

KEY WORDS

Navigation