Log in

Formulation of Gelucire®-Based Solid Dispersions of Atorvastatin Calcium: In Vitro Dissolution and In Vivo Bioavailability Study

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

A Correction to this article was published on 13 October 2022

This article has been updated

Abstract

Atorvastatin (ATV) is a poorly water-soluble drug that exhibits poor oral bioavailability. Therefore, present research was designed to develop ATV solid dispersions (SDs) to enhance the solubility, drug release, and oral bioavailability. Various SDs of ATV were formulated by conventional and microwave-induced melting methods using Gelucire®48/16 as a carrier. The formulated SDs were characterized for different physicochemical characterizations, drug release, and oral bioavailability studies. The results obtained from the different physicochemical characterization indicate the molecular dispersion of ATV within various SDs. The drug polymer interaction results showed no interaction between ATV and used carrier. There was marked enhancement in the solubility (1.95–9.32 folds) was observed for ATV in prepared SDs as compare to pure ATV. The drug content was found to be in the range of 96.19% ± 2.14% to 98.34% ± 1.32%. The drug release results revealed significant enhancement in ATV release from prepared SDs compared to the pure drug and the marketed tablets. The formulation F8 showed high dissolution performance (% DE30 value of 80.65 ± 3.05) among the other formulations. Optimized Gelucire®48/16–based SDs formulation suggested improved oral absorption of atorvastatin as evidenced with improved pharmacokinetic parameters (Cmax 2864.33 ± 573.86 ng/ml; AUC0-t 5594.95 ± 623.3 ng/h ml) as compared to ATV suspension (Cmax 317.82 ± 63.56 ng/ml; AUC0-t 573.94 ± 398.9 ng/h ml) and marketed tablets (Cmax 852.72 ± 42.63 ng/ml; 4837.4 ± 174.7 ng/h ml). Conclusively, solid dispersion-based oral formulation of atorvastatin could be a promising approach for enhanced drug solubilization, dissolution, and subsequently improved absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Hörter D, Dressman J. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46:75–87.

    Article  PubMed  Google Scholar 

  2. Löbenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50:3–12.

    Article  PubMed  Google Scholar 

  3. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  CAS  PubMed  Google Scholar 

  4. Liu Z, Xu Y, Hao H, Yin C, Xu J, Li J, et al. Efficacy of high intensity atorvastatin versus moderate intensity atorvastatin for acute coronary syndrome patients with diabetes mellitus. Int J Cardiol. 2016;222:22–6.

    Article  PubMed  Google Scholar 

  5. Lau YY, Okochi H, Huang Y, Benet LZ. Pharmacokinetics of atorvastatin and its hydroxy metabolites in rats and the effects of concomitant rifampicin single doses: relevance of first-pass effect from hepatic uptake transporters, and intestinal and hepatic metabolism. Drug Metab Dispos. 2006;34:1175–81.

    Article  CAS  PubMed  Google Scholar 

  6. Choudhary A, Rana AC, Aggarwal G, Kumar V, Zakir F. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharm Sin B. 2012;2:421–8.

    Article  CAS  Google Scholar 

  7. Kim M-S, ** S-J, Kim J-S, Park HJ, Song H-S, Neubert RHH, et al. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm. 2008;69:454–65.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang H-X, Wang J-X, Zhang Z-B, Le Y, Shen Z-G, Chen J-F. Micronization of atorvastatin calcium by antisolvent precipitation process. Int J Pharm. 2009;374:106–13.

    Article  CAS  PubMed  Google Scholar 

  9. Anwar M, Warsi MH, Mallick N, Akhter S, Gahoi S, Jain GK, et al. Enhanced bioavailability of nano-sized chitosan-atorvastatin conjugate after oral administration to rats. Eur J Pharm Sci. 2011;44:241–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kadu PJ, Kushare SS, Thacker DD, Gattani SG. Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS). Pharm Dev Technol. 2011;16:65–74.

    Article  CAS  PubMed  Google Scholar 

  11. Yeom DW, Son HY, Kim JH, Kim SR, Lee SG, Song SH, et al. Development of a solidified self-microemulsifying drug delivery system (S-SMEDDS) for atorvastatin calcium with improved dissolution and bioavailability. Int J Pharm. 2016;506:302–11.

    Article  CAS  PubMed  Google Scholar 

  12. Khan FN, Dehghan MHG. Enhanced bioavailability of atorvastatin calcium from stabilized gastric resident formulation. AAPS PharmSciTech. 2011;12:1077–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khan FN, Dehghan MHG. Enhanced bioavailability and dissolution of atorvastatin calcium from floating microcapsules using minimum additives. Sci Pharm. 2012;80:215–28.

    Article  CAS  PubMed  Google Scholar 

  14. Ramani K, Singh S, Maurya A, Deshmukh P, Chatap V, Bari S. Design and development of atorvastatin calcium buccoadhesive bilayered devices for oral drug delivery. Journal of drug delivery science and technology. 2012;22:505–10.

    Article  CAS  Google Scholar 

  15. Li Z, Tao W, Zhang D, Wu C, Song B, Wang S, et al. The studies of PLGA nanoparticles loading atorvastatin calcium for oral administration in vitro and in vivo. asian journal of pharmaceutical sciences. 2017;12:285–91.

    Article  PubMed  Google Scholar 

  16. Ahmed IS, El-Hosary R, Shalaby S, Abd-Rabo MM, Elkhateeb DG, Nour S. PD-PK evaluation of freeze-dried atorvastatin calcium-loaded poly-ε-caprolactone nanoparticles. Int J Pharm. 2016;504:70–9.

    Article  CAS  PubMed  Google Scholar 

  17. Palanisamy M, James A, Khanam J. Atorvastatin–cyclodextrin systems: physiochemical and biopharmaceutical evaluation. Journal of Drug Delivery Science and Technology. 2016;31:41–52.

    Article  CAS  Google Scholar 

  18. Jahangiri A, Barzegar-Jalali M, Garjani A, Javadzadeh Y, Hamishehkar H, Afroozian A, et al. Pharmacological and histological examination of atorvastatin-PVP K30 solid dispersions. Powder Technol. 2015;286:538–45.

    Article  CAS  Google Scholar 

  19. Kim M-S, Kim J-S, Cho W, Park HJ, Hwang S-J. Oral absorption of atorvastatin solid dispersion based on cellulose or pyrrolidone derivative polymers. Int J Biol Macromol. 2013;59:138–42.

    Article  CAS  PubMed  Google Scholar 

  20. Bobe K, Subrahmanya C, Suresh S, Gaikwad D, Patil M, Khade T, et al. Formulation and evaluation of solid dispersion of atorvastatin with various carriers. International journal of comprehensive pharmacy. 2011;2:1–6.

    Google Scholar 

  21. Shaker MA. Dissolution and bioavailability enhancement of Atorvastatin: Gelucire semi-solid binary system. Journal of Drug Delivery Science and Technology. 2018;43:178–84.

    Article  CAS  Google Scholar 

  22. Rodde MS, Divase GT, Devkar TB, Tekade AR. Solubility and bioavailability enhancement of poorly aqueous soluble atorvastatin: in vitro, ex vivo, and in vivo studies. Biomed Res Int. 2014;2014:463895.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sekiguchi K, Obi N. Studies on Absorption of Eutectic Mixture. I. A Comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961;9:866–72.

    Article  CAS  Google Scholar 

  24. Craig DQ. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231:131–44.

    Article  CAS  PubMed  Google Scholar 

  25. Weuts I, Kempen D, Verreck G, Decorte A, Heymans K, Peeters J, et al. Study of the physicochemical properties and stability of solid dispersions of loperamide and PEG6000 prepared by spray drying. Eur J Pharm Biopharm. 2005;59:119–26.

    Article  CAS  PubMed  Google Scholar 

  26. Vo CL, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85:799–813.

    Article  CAS  PubMed  Google Scholar 

  27. Zawar LR, Bari SB. Preparation, characterization and in vivo evaluation of antihyperglycemic activity of microwave generated repaglinide solid dispersion. Chem Pharm Bull. 2012;60:482–7.

    Article  CAS  Google Scholar 

  28. Alshehri S, Shakeel F, Ibrahim M, Elzayat E, Altamimi M, Shazly G, et al. Influence of the microwave technology on solid dispersions of mefenamic acid and flufenamic acid. PLoS One. 2017;12:e0182011.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Alshehri SM, Shakeel F, Ibrahim MA, Elzayat EM, Altamimi M, Mohsin K, et al. Dissolution and bioavailability improvement of bioactive apigenin using solid dispersions prepared by different techniques. Saudi Pharmaceutical Journal. 2019;27:264–73.

    Article  PubMed  Google Scholar 

  30. Maurya D, Belgamwar V, Tekade A. Microwave induced solubility enhancement of poorly water soluble atorvastatin calcium. J Pharm Pharmacol. 2010;62:1599–606.

    Article  CAS  PubMed  Google Scholar 

  31. Moneghini M, Bellich B, Baxa P, Princivalle F. Microwave generated solid dispersions containing Ibuprofen. Int J Pharm. 2008;361:125–30.

    Article  CAS  PubMed  Google Scholar 

  32. Moneghini M, Zingone G, De Zordi N. Influence of the microwave technology on the physical–chemical properties of solid dispersion with Nimesulide. Powder Technol. 2009;195:259–63.

    Article  CAS  Google Scholar 

  33. Karatas A, Yuksel N, Baykara T. Improved solubility and dissolution rate of piroxicam using gelucire 44/14 and labrasol. Farmaco. 2005;60:777–82.

    Article  CAS  PubMed  Google Scholar 

  34. da Fonseca Antunes AB, De Geest BG, Vervaet C, Remon JP. Gelucire 44/14 based immediate release formulations for poorly water-soluble drugs. Drug Dev Ind Pharm. 2013;39:791–8.

    Article  PubMed  Google Scholar 

  35. Barker SA, Yap SP, Yuen KH, McCoy CP, Murphy JR, Craig DQM. An investigation into the structure and bioavailability of α-tocopherol dispersions in Gelucire 44/14. J Control Release. 2003;91:477–88.

    Article  CAS  PubMed  Google Scholar 

  36. Pawar YB, Purohit H, Valicherla GR, Munjal B, Lale SV, Patel SB, et al. Novel lipid based oral formulation of curcumin: development and optimization by design of experiments approach. Int J Pharm. 2012;436:617–23.

    Article  CAS  PubMed  Google Scholar 

  37. Jannin, V.; Di Cuia, M.; Chevrier, S.; Faure, A.; Chavant, Y.; Voutsinas, C.; Demarne, F. Characterization of a new self-emulsifying excipient to expand formulation options for poorly soluble drugs: Gelucire® 48/16. In Proceedings of Poster presentation at AAPS Annual Meeting and Exposition, San Diego, CA, Poster.

  38. Gattefossé. Gelucire 48/16, Material safety data sheet. 2015. https://www.gattefosse.com/pharmaceuticals-products/gelucire-4816.

  39. Gattefossé. Material safety data sheet. 2015.

  40. Aldosari, B.N.A. Development and evaluation of self-nanoemulsifying drug delivery systems for oral delivery of indomethacin. UCL (University College London), 2018.

  41. Bertoni S, Albertini B, Ferraro L, Beggiato S, Dalpiaz A, Passerini N. Exploring the use of spray congealing to produce solid dispersions with enhanced indomethacin bioavailability: in vitro characterization and in vivo study. Eur J Pharm Biopharm. 2019;139:132–41.

    Article  CAS  PubMed  Google Scholar 

  42. Bertoni S, Albertini B, Passerini N. Different BCS Class II Drug-Gelucire Solid Dispersions prepared by spray congealing: evaluation of solid state properties and in vitro performances. Pharmaceutics. 2020;12.

  43. Isaac J, Kaity S, Ganguly S, Ghosh A. Microwave-induced solid dispersion technology to improve bioavailability of glipizide. J Pharm Pharmacol. 2013;65:219–29.

    Article  CAS  PubMed  Google Scholar 

  44. El-Badry M, Fetih G, Fathy M. Improvement of solubility and dissolution rate of indomethacin by solid dispersions in Gelucire 50/13 and PEG4000. Saudi Pharm J. 2009;17:217–25.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shete G, Puri V, Kumar L, Bansal AK. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples. AAPS PharmSciTech. 2010;11:598–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen H, Zhong M. Preparation and evaluation of self-microemulsifying drug delivery systems (SMEDDS) containing atorvastatin. J Pharm Pharmacol. 2006;58:1183–91.

    Article  CAS  PubMed  Google Scholar 

  47. Hashem FM, Al-Sawahli MM, Nasr M, Ahmed OA. Optimized zein nanospheres for improved oral bioavailability of atorvastatin. Int J Nanomedicine. 2015;10:4059–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Makar RR, Latif R, Hosni EA, El Gazayerly ON. Optimization for glimepiride dissolution enhancement utilizing different carriers and techniques. Journal of Pharmaceutical Investigation. 2013;43:115–31.

    Article  CAS  Google Scholar 

  49. Palem CR, Patel S, Pokharkar BV. Solubility and stability enhancement of atorvastatin by cyclodextrin complexation. PDA J Pharm Sci Technol. 2009;63:217–25.

    CAS  PubMed  Google Scholar 

  50. Lennernas H. Clinical Pharmacokinetics of atorvastatin. Clin Pharmacokinet. 2003;42:1141–60.

    Article  PubMed  Google Scholar 

  51. Panigrahi KC, Patra CN, Jena GK, Ghose D, Jena J, Panda SK, et al. Gelucire: a versatile polymer for modified release drug delivery system. Future Journal of Pharmaceutical Sciences. 2018;4(1):102–8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nawal M. Almutairi (a Pharm D candidate) for her assistance in completing some of the experiments in this work. The authors extend their thanks to the Deanship of Scientific Research at King Saud University for the logistic support of this work through the Research Assistant Internship Program, Project no. (RAIP-2-20-215). The authors extend their sincere appreciation to theDeanship of Scientific Research at King Saud University forfunding this research work through the research groupproject number RG-1441-460.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sultan Alshehri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Basmah N. Aldosari and Alanood S. Almurshedi are co-first authors.

The original article has been updated to correct the author’s name from "Ehab Alzait" to "Ehab Elzayat”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldosari, B.N., Almurshedi, A.S., Alfagih, I.M. et al. Formulation of Gelucire®-Based Solid Dispersions of Atorvastatin Calcium: In Vitro Dissolution and In Vivo Bioavailability Study. AAPS PharmSciTech 22, 161 (2021). https://doi.org/10.1208/s12249-021-02019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02019-5

KEY WORDS

Navigation