Log in

Quality Risk Management and Quality by Design for the Development of Diclofenac Sodium Intra-articular Gelatin Microspheres

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the development of an intra-articular nonsteroidal anti-inflammatory drug gelatin microsphere formulation based on quality risk management and quality by design approaches. Specifically, after setting the quality target product profile and the critical quality attributes, risk assessment was performed by constructing Ishikawa fishbone diagrams based on preliminary hazard analysis. A Plackett–Burman screening experimental design was applied in order to identify the factors (previously classified by risk assessment analysis as having high risk of failure) having a statistically significant impact on the formation of gelatin microspheres. Particle size, polydispersity index, and drug loading were used as responses, while diclofenac sodium was selected as a model drug. All drug-loaded gelatin microspheres were prepared by emulsion-crosslinking process. Screening results showed that gelatin type, surfactant type and quantity, oil phase type, emulsification speed, and glutaraldehyde’s concentration had a statistically significant impact on microsphere’s final and intermediate critical quality attributes. A design space was then constructed based on central composite design overlaying contour plots, while verification experiments for the optimum suggested formulation (derived from a set control strategy) showed good agreement between the predicted and the experimentally observed results. In addition, the physicochemical characterization of the optimum formulation showed the formation of significant molecular interactions between the drug and the gelatin matrix, leading to the complete amorphization of diclofenac within the microsphere structure, while dissolution release experiments showed a biphasic release profile which extended the drug’s release for up to 30 days, governed by a Fickian diffusion release mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bedouet L, Moine L, Pascale F, Nguyen VN, Labarre D, Laurent A. Synthesis of hydrophilic intra-articular microspheres conjugated to ibuprofen and evaluation of anti-inflammatory activity on articular explants. Int J Pharm. 2014;459(1–2):51–61. https://doi.org/10.1016/j.ijpharm.2013.11.004.

    Article  CAS  PubMed  Google Scholar 

  2. Larsen C, Ostergaard J, Larsen SW, Jensen H, Jacobsen S, Lindegaard C, et al. Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J Pharm Sci. 2008;97(11):4622–54. https://doi.org/10.1002/jps.21346.

    Article  CAS  PubMed  Google Scholar 

  3. Pradal J, Jordan O, Allémann E. Intra-articular drug delivery for arthritis diseases: the value of extended release and targeting strategies. J Drug Deliv Sci Technol. 2012;22(5):409–19. https://doi.org/10.1016/S1773-2247(12)50067-5.

    Article  CAS  Google Scholar 

  4. Bottini M, Bhattacharya K, Fadeel B, Magrini A, Bottini N, Rosato N. Nanodrugs to target articular cartilage: an emerging platform for osteoarthritis therapy. Nanomedicine. 2016;12(2):255–68. https://doi.org/10.1016/j.nano.2015.09.013.

    Article  CAS  PubMed  Google Scholar 

  5. Reeff J, Oprenyeszk F, Franck T, Goole J, De Vriese C, Serteyn D, et al. Development and evaluation in vitro and in vivo of injectable hydrolipidic gels with sustained-release properties for the management of articular pathologies such as osteoarthritis. Int J Pharm. 2015;490(1–2):74–84. https://doi.org/10.1016/j.ijpharm.2015.04.064.

    Article  CAS  PubMed  Google Scholar 

  6. Fernandez-Carballido A, Herrero-Vanrell R, Molina-Martinez IT, Pastoriza P. Biodegradable ibuprofen-loaded PLGA microspheres for intraarticular administration. Effect of Labrafil addition on release in vitro. Int J Pharm. 2004;279(1–2):33–41. https://doi.org/10.1016/j.ijpharm.2004.04.003.

    Article  CAS  PubMed  Google Scholar 

  7. Saravanan M, Bhaskar K, Maharajan G, Pillai KS. Development of gelatin microspheres loaded with diclofenac sodium for intra-articular administration. J Drug Target. 2011;19(2):96–103. https://doi.org/10.3109/10611861003733979.

    Article  CAS  PubMed  Google Scholar 

  8. Saravanan M, Anbu J, Maharajan G, Pillai KS. Targeted delivery of diclofenac sodium via gelatin magnetic microspheres formulated for intra-arterial administration. J Drug Target. 2008;16(5):366–78. https://doi.org/10.1080/10611860802046224.

    Article  CAS  PubMed  Google Scholar 

  9. Kawadkar J, Jain R, Kishore R, Pathak A, Chauhan MK. Formulation and evaluation of flurbiprofen-loaded genipin cross-linked gelatin microspheres for intra-articular delivery. J Drug Target. 2013;21(2):200–10. https://doi.org/10.3109/1061186x.2012.745549.

    Article  CAS  PubMed  Google Scholar 

  10. Janssen M, Timur UT, Woike N, Welting TJ, Draaisma G, Gijbels M, et al. Celecoxib-loaded PEA microspheres as an auto regulatory drug-delivery system after intra-articular injection. J Control Release. 2016;244(Pt A):30–40. https://doi.org/10.1016/j.jconrel.2016.11.003.

    Article  CAS  Google Scholar 

  11. Gomez-Gaete C, Retamal M, Chavez C, Bustos P, Godoy R, Torres-Vergara P. Development, characterization and in vitro evaluation of biodegradable rhein-loaded microparticles for treatment of osteoarthritis. Eur J Pharm Sci. 2017;96:390–7. https://doi.org/10.1016/j.ejps.2016.10.010.

    Article  CAS  PubMed  Google Scholar 

  12. Qi X, Qin X, Yang R, Qin J, Li W, Luan K, et al. Intra-articular administration of chitosan thermosensitive in situ hydrogels combined with diclofenac sodium-loaded alginate microspheres. J Pharm Sci. 2016;105(1):122–30. https://doi.org/10.1016/j.xphs.2015.11.019.

    Article  CAS  PubMed  Google Scholar 

  13. El-Setouhy DA, Abdelmalak NS, Anis SE, Louis D. Leflunomide biodegradable microspheres intended for intra-articular administration: development, anti-inflammatory activity and histopathological studies. Int J Pharm. 2015;495(2):664–70. https://doi.org/10.1016/j.ijpharm.2015.09.040.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Liu S, Ming J, Li Y, Deng M, He B. Sustained release effects of berberine-loaded chitosan microspheres on in vitro chondrocyte culture. Drug Dev Ind Pharm. 2017;43(10):1703–14. https://doi.org/10.1080/03639045.2017.1339076.

    Article  CAS  PubMed  Google Scholar 

  15. Foox M, Zilberman M. Drug delivery from gelatin-based systems. Expert Opin Drug Deliv. 2015;12(9):1547–63. https://doi.org/10.1517/17425247.2015.1037272.

    Article  CAS  PubMed  Google Scholar 

  16. Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release. 2013;172(3):1075–91. https://doi.org/10.1016/j.jconrel.2013.09.019.

    Article  CAS  PubMed  Google Scholar 

  17. Hathout RM, Omran MK. Gelatin-based particulate systems in ocular drug delivery. Pharm Dev Technol. 2016;21(3):379–86. https://doi.org/10.3109/10837450.2014.999786.

    Article  CAS  PubMed  Google Scholar 

  18. Coester C, Nayyar P, Samuel J. In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur J Pharm Biopharm. 2006;62(3):306–14. https://doi.org/10.1016/j.ejpb.2005.09.009.

    Article  CAS  PubMed  Google Scholar 

  19. Dwivedi P, Kansal S, Sharma M, Shukla R, Verma A, Shukla P, et al. Exploiting 4-sulphate N-acetyl galactosamine decorated gelatin nanoparticles for effective targeting to professional phagocytes in vitro and in vivo. J Drug Target. 2012;20(10):883–96. https://doi.org/10.3109/1061186x.2012.725169.

    Article  CAS  PubMed  Google Scholar 

  20. Djabourov M, Leblond J, Papon P. Gelation of aqueous gelatin solutions. I. Structural investigation. J Phys. 1988;49:319–32.

    Article  CAS  Google Scholar 

  21. Bigi A, Cojazzi G, Panzavolta S, Roveri N, Rubini K. Stabilization of gelatin films by crosslinking with genipin. Biomaterials. 2002;23(24):4827–32.

    Article  CAS  Google Scholar 

  22. Digenis GA, Gold TB, Shah VP. Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance. J Pharm Sci. 1994;83(7):915–21.

    Article  CAS  Google Scholar 

  23. Salis A, Porcu EP, Gavini E, Fois GR, Icaro Cornaglia A, Rassu G, et al. In situ forming biodegradable poly(epsilon-caprolactone) microsphere systems: a challenge for transarterial embolization therapy. In vitro and preliminary ex vivo studies. Expert Opin Drug Deliv. 2017;14(4):453–65. https://doi.org/10.1080/17425247.2017.1295036.

    Article  CAS  PubMed  Google Scholar 

  24. Hales D, Vlase L, Porav SA, Bodoki A, Barbu-Tudoran L, Achim M, et al. A quality by design (QbD) study on enoxaparin sodium loaded polymeric microspheres for colon-specific delivery. Eur J Pharm Sci. 2017;100:249–61. https://doi.org/10.1016/j.ejps.2017.01.006.

    Article  CAS  PubMed  Google Scholar 

  25. Blanco-García E, Otero-Espinar FJ, Blanco-Méndez J, Leiro-Vidal JM, Luzardo-Álvarez A. Development and characterization of anti-inflammatory activity of curcumin-loaded biodegradable microspheres with potential use in intestinal inflammatory disorders. Int J Pharm. 2017;518(1):86–104. https://doi.org/10.1016/j.ijpharm.2016.12.057.

    Article  CAS  PubMed  Google Scholar 

  26. Ung KT, Rao N, Weers JG, Huang D, Chan HK. Design of spray dried insulin microparticles to bypass deposition in the extrathoracic region and maximize total lung dose. Int J Pharm. 2016;511(2):1070–9. https://doi.org/10.1016/j.ijpharm.2016.07.073.

    Article  CAS  PubMed  Google Scholar 

  27. Tubati VP, Gopala Krishna Murthy TE, Samba Siva Rao A. Formulation development and statistical optimization of ivabradine hydrochloride floating pulsatile microspheres using response surface methodology. Asian J Pharm. 2016;10:110–20.

    Google Scholar 

  28. Gaspar MC, Sousa JJ, Pais AA, Cardoso O, Murtinho D, Serra ME, et al. Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy. Eur J Pharm Biopharm. 2015;96:65–75. https://doi.org/10.1016/j.ejpb.2015.07.010.

    Article  CAS  PubMed  Google Scholar 

  29. Andres-Guerrero V, Zong M, Ramsay E, Rojas B, Sarkhel S, Gallego B, et al. Novel biodegradable polyesteramide microspheres for controlled drug delivery in ophthalmology. J Control Release. 2015;211:105–17. https://doi.org/10.1016/j.jconrel.2015.05.279.

    Article  CAS  PubMed  Google Scholar 

  30. Garcia A, Leonardi D, Piccirilli GN, Mamprin ME, Olivieri AC, Lamas MC. Spray drying formulation of albendazole microspheres by experimental design. In vitro-in vivo studies. Drug Dev Ind Pharm. 2015;41(2):244–52. https://doi.org/10.3109/03639045.2013.858737.

    Article  CAS  PubMed  Google Scholar 

  31. Mughal MA, Saripella KK, Kouba C, Iqbal Z, Neau SH. Coated hydralazine hydrochloride beads for sustained release after oral administration. Drug Dev Ind Pharm. 2013;39(9):1439–46. https://doi.org/10.3109/03639045.2012.719904.

    Article  CAS  PubMed  Google Scholar 

  32. Pallagi E, Karimi K, Ambrus R, Szabo-Revesz P, Csoka I. New aspects of develo** a dry powder inhalation formulation applying the quality-by-design approach. Int J Pharm. 2016;511(1):151–60. https://doi.org/10.1016/j.ijpharm.2016.07.003.

    Article  CAS  PubMed  Google Scholar 

  33. Vora C, Patadia R, Mittal K, Mashru R. Risk based approach for design and optimization of stomach specific delivery of rifampicin. Int J Pharm. 2013;455(1–2):169–81. https://doi.org/10.1016/j.ijpharm.2013.07.043.

    Article  CAS  PubMed  Google Scholar 

  34. Aksu B, Paradkar A, de Matas M, Ozer O, Guneri T, York P. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation. Pharm Dev Technol. 2013;18(1):236–45. https://doi.org/10.3109/10837450.2012.705294.

    Article  CAS  PubMed  Google Scholar 

  35. Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25(4):781–91. https://doi.org/10.1007/s11095-007-9511-1.

    Article  CAS  PubMed  Google Scholar 

  36. Bhatia H, Read E, Agarabi C, Brorson K, Lute S, Yoon S. A design space exploration for control of critical quality attributes of mAb. Int J Pharm. 2016;512(1):242–52. https://doi.org/10.1016/j.ijpharm.2016.08.046.

    Article  CAS  PubMed  Google Scholar 

  37. Politis SN, Colombo P, Colombo G, Rekkas DM. Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm. 2017;43(6):889–901. https://doi.org/10.1080/03639045.2017.1291672.

    Article  CAS  Google Scholar 

  38. Riley BS, Li X. Quality by design and process analytical technology for sterile products--where are we now? AAPS PharmSciTech. 2011;12(1):114–8. https://doi.org/10.1208/s12249-010-9566-x.

    Article  PubMed  Google Scholar 

  39. Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771–83. https://doi.org/10.1208/s12248-014-9598-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guidance for industry [electronic resource]: Q8(R2) pharmaceutical development. Rockville, MD: U.S. Dept. of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research: Center for Biologics Evaluation and Research; 2009.

  41. Guidance for industry [electronic resource]: Q9 quality risk management. Rockville, MD: U.S. Dept. of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research: Center for Biologics Evaluation and Research; 2006.

  42. Guidance for industry [electronic resource]: Q10 pharmaceutical quality system. Silver Spring, MD: Rockville, MD: U.S. Dept. of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research; Center for Biologics Evaluation and Research; 2009.

  43. Guidance for industry [electronic resource]: Q8, Q9, and Q10 questions and answers. Silver Spring, MD: Rockville, MD: U.S. Dept. of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research; Center for Biologics Evaluation and Research; 2011.

  44. Guidance for industry [electronic resource]: Q11 development and manufacture of drug substance. Silver Spring, MD: Rockville, MD: U.S. Dept. of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research; Center for Biologics Evaluation and Research; 2012.

  45. FDA-EMA parallel assessment of quality-by-design elements of marketing applications. Silver Spring, MD: Rockville, MD: U.S. Dept. of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research; Center for Biologics Evaluation and Research; 2013.

  46. ICH Quality Implementation Working Group. Points to consider ICH-endorsed guide for ICH Q8/Q9/Q10 implementation 2011.

  47. Farhangi M, Dadashzadeh S, Bolourchian N. Biodegradable gelatin microspheres as controlled release intraarticular delivery system: the effect of formulation variables. Indian J Pharm Sci. 2017;79:105–12. https://doi.org/10.4172/pharmaceutical-sciences.1000206.

    Article  Google Scholar 

  48. Vandelli MA, Rivasi F, Guerra P, Forni F, Arletti R. Gelatin microspheres crosslinked with d,l-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. Int J Pharm. 2001;215(1):175–84. https://doi.org/10.1016/S0378-5173(00)00681-5.

    Article  CAS  PubMed  Google Scholar 

  49. NIST/SEMATECH e-Handbook of statistical methods, http://www.itl.nist.gov/div898/handbook/, Accessed 14 Mar 2020.

  50. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33. https://doi.org/10.1016/s0928-0987(01)00095-1.

    Article  CAS  PubMed  Google Scholar 

  51. Mukherjee I, Rosolen M. Thermal transitions of gelatin evaluated using DSC sample pans of various seal integrities. J Therm Anal Calorim. 2013;114(3):1161–6. https://doi.org/10.1007/s10973-013-3166-4.

    Article  CAS  Google Scholar 

  52. Narayani R, Panduranga Rao K. Biodegradable microspheres using two different gelatin drug conjugates for the controlled delivery of methotrexate. Int J Pharm. 1996;128(1):261–8. https://doi.org/10.1016/0378-5173(95)04323-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the School of Chemical Engineering, Aristotle University of Thessaloniki, Greece, for providing access to the XRD instrument and Mr. Anastasios Palladas for the analysis, as well as Ass. Prof. Christos Chatzidoukas for providing access to the particle size analyzer (Malvern Mastersizer 2000). Also, the authors would like to thank the School of Physics, Department of Solid State Physics for providing access to the scanning electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Barmpalexis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakas, A., Dalatsi, A.M., Kapourani, A. et al. Quality Risk Management and Quality by Design for the Development of Diclofenac Sodium Intra-articular Gelatin Microspheres. AAPS PharmSciTech 21, 127 (2020). https://doi.org/10.1208/s12249-020-01678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01678-0

KEY WORDS

Navigation