Log in

Plasma Stability and Plasma Metabolite Concentration–Time Profiles of Oligo(Lactic Acid)8-Paclitaxel Prodrug Loaded Polymeric Micelles

  • Research Article
  • Recent Advances in Drug Delivery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Paclitaxel (PTX) is a frequently prescribed chemotherapy drug used to treat a wide variety of solid tumors. Oligo(lactic acid)8-PTX prodrug (o(LA)8-PTX) loaded poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) micelles have higher loading, slower release and higher antitumor efficacy in murine tumor models over PTX-loaded PEG-b-PLA micelles. The goal of this work is to study plasma stability of o(LA)8-PTX-loaded PEG-b-PLA micelles and its pharmacokinetics after IV injection in rats. In rat plasma, o(LA)8-PTX prodrug is metabolized into o(LA)1-PTX and PTX. In human plasma, o(LA)8-PTX is metabolized more slowly into o(LA)2-PTX, o(LA)1-PTX, and PTX. After IV injection of 10 mg/kg PTX-equiv of o(LA)8-PTX prodrug loaded PEG-b-PLA micelles in Sprague–Dawley rats, metabolite abundance in plasma follows the order: o(LA)1-PTX > o(LA)2-PTX > o(LA)4-PTX > o(LA)6-PTX. Bile metabolite profiles of the o(LA)8-PTX prodrug is similar to plasma metabolite profiles. In comparison to equivalent doses of Abraxane®, plasma PTX exposure is two orders of magnitude higher for Abraxane® than PTX from o(LA)8-PTX prodrug loaded PEG-b-PLA micelles, and plasma o(LA)1-PTX exposure is fivefold higher than PTX from Abraxane®, demonstrating heightened plasma metabolite exposure for enhanced antitumor efficacy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stage TB, Bergmann TK, Kroetz DL. Clinical pharmacokinetics of paclitaxel monotherapy: an updated literature review. Clin Pharmacokinet. 2018;57:7–19. https://doi.org/10.1007/s40262-017-0563-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25:2677–81. https://doi.org/10.1091/mbc.E14-04-0916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nehate C, Jain S, Saneja A, Khare V, Alam N, Dubey RD, Gupta PN. Paclitaxel formulations- challenges and delivery options.pdf. Curr Drug Deliv. 2014;11:666–86. https://doi.org/10.2174/1567201811666140609154949.

    Article  CAS  PubMed  Google Scholar 

  4. Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des. 2006;12:4669–84. https://doi.org/10.2174/138161206779026245.

    Article  CAS  PubMed  Google Scholar 

  5. Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 2012;64:237–45. https://doi.org/10.1016/j.addr.2012.09.016.

    Article  Google Scholar 

  6. Shin DH, Tam YT, Kwon GS. Polymeric micelle nanocarriers in cancer research. Front Chem Sci Eng. 2016;10:348–59. https://doi.org/10.1007/s11705-016-1582-2.

    Article  CAS  Google Scholar 

  7. Clogston JD, Hackley VA, Prina-Mello A, Puri S, Sonzini S, Soo PL. Sizing up the next generation of nanomedicines. Pharm Res. 2020;37:1–10.

    Article  Google Scholar 

  8. Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release. 2017;267:100–18. https://doi.org/10.1016/j.jconrel.2017.09.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alani AWG, Bae Y, Rao DA, Kwon GS. Polymeric micelles for the pH-dependent controlled, continuous low dose release of paclitaxel. Biomaterials. 2010;31:1765–72. https://doi.org/10.1016/j.biomaterials.2009.11.038.

    Article  CAS  PubMed  Google Scholar 

  10. Marios A, Dunne M, Storm G, Allen C. The battle of “ nano ” paclitaxel. Adv Drug Deliv Rev. 2017;122:20–30. https://doi.org/10.1016/j.addr.2017.02.003.

    Article  CAS  Google Scholar 

  11. He Z, Wan X, Schulz A, Bludau H, Dobrovolskaia MA, Stern ST, Montgomery SA, Yuan H, Li Z, Alakhova D, Sokolsky M, Darr DB, Perou CM, Jordan R, Luxenhofer R, Kabanov AV. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials. 2016;101:296–309. https://doi.org/10.1016/j.biomaterials.2016.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rasoulianboroujeni M, Repp L, Lee HJ, Kwon GS. Production of paclitaxel-loaded PEG-b-PLA micelles using PEG for drug loading and freeze-drying. J Control Release. 2022;350:350–9. https://doi.org/10.1016/j.jconrel.2022.08.032.

    Article  CAS  PubMed  Google Scholar 

  13. Hwang D, Vinod N, Skoczen SL, Ramsey JD, Snapp KS, Montgomery SA, Wang M, Lim C, Frank JE, Sokolsky-Papkov M, Li Z, Yuan H, Stern ST, Kabanov AV. Bioequivalence assessment of high-capacity polymeric micelle nanoformulation of paclitaxel and Abraxane in rodent and non-human primate models using a stable isotope tracer assay. Biomaterials. 2021;278:121140. https://doi.org/10.1016/j.biomaterials.2021.121140.

    Article  CAS  PubMed  Google Scholar 

  14. Cabral H, Miyata K, Osada K, Kataoka K. Block copolymer micelles in nanomedicine applications. Chem Rev. 2018;118:6844–92. https://doi.org/10.1021/acs.chemrev.8b00199.

    Article  CAS  PubMed  Google Scholar 

  15. Gadekar V, Borade Y, Kannaujia S, Rajpoot K, Anup N, Tambe V, Kalia K, Tekade RK. Nanomedicines accessible in the market for clinical interventions. J Control Release. 2021;330:372–97. https://doi.org/10.1016/j.jconrel.2020.12.034.

    Article  CAS  PubMed  Google Scholar 

  16. Stern ST, Zou P, Skoczen S, **e S, Liboiron B, Harasym T, Tardi P, Mayer LD, McNeil SE. Prediction of nanoparticle prodrug metabolism by pharmacokinetic modeling of biliary excretion. J Control Release. 2013;172:558–67. https://doi.org/10.1016/j.jconrel.2013.04.025.

    Article  CAS  PubMed  Google Scholar 

  17. Tam YT, Gao J, Kwon GS. Oligo(lactic acid)n-paclitaxel prodrugs for poly(ethylene glycol)-block-poly(lactic acid) micelles: loading, release, and backbiting conversion for anticancer activity. J Am Chem Soc. 2016;138:8674–7. https://doi.org/10.1021/jacs.6b03995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tam YT, Shin DH, Chen KE, Kwon GS. Poly(ethylene glycol)-block-poly(D, L-lactic acid) micelles containing oligo(lactic acid)8-paclitaxel prodrug: in vivo conversion and antitumor efficacy. J Control Release. 2019;298:186–93. https://doi.org/10.1016/j.jconrel.2019.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tam YT, Repp L, Ma Z-X, Feltenberger JB, Kwon GS. Oligo(lactic acid)8-rapamycin prodrug-loaded poly(ethylene glycol)-block-poly(lactic acid) micelles for injection. Pharm Res. 2019;36:70. https://doi.org/10.1007/s11095-019-2600-0.

    Article  CAS  PubMed  Google Scholar 

  20. Repp L, Unterberger CJ, Ye Z, Feltenberger JB, Swanson SM, Marker PC, Kwon GS. Oligo(lactic acid)8-docetaxel prodrug-loaded PEG-b-PLA micelles for prostate cancer. Nanomaterials. 2021;11:2745. https://doi.org/10.3390/nano11102745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ojha T, Hu Q, Colombo C, Wit J, Van Geijn M, van Steenbergen MJ, Bagheri M, Königs-Werner H, Buhl EM, Bansal R, Shi Y, Hennink WE, Storm G, Rijcken CJF, Lammers T. Lyophilization stabilizes clinical-stage core-crosslinked polymeric micelles to overcome cold chain supply challenges. Biotechnol J. 2021;16:e2000212. https://doi.org/10.1002/biot.202000212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Jong SJ, Arias ER, Rijkers DTS, Van Nostrum CF, Kettenes-Van Den Bosch JJ, Hennink WE. New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer (Guildf). 2001;42:2795–802. https://doi.org/10.1016/S0032-3861(00)00646-7.

    Article  Google Scholar 

  23. Liederer BM, Borchardt RT. Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci. 2006;95:1177–95. https://doi.org/10.1002/jps.

    Article  CAS  PubMed  Google Scholar 

  24. Kingston DGI. Taxol: the chemistry and structure-activity relationships of a novel anticancer agent. Tibtech. 1994;12:222–7.

    Article  CAS  Google Scholar 

  25. Matesanz R, Barasoain I, Yang C-G, Wang L, Li X, de Ines C, Coderch C, Gago F, Barbero JJ, Andreu JM, Fang W-S, Diaz JF. Optimization of taxane binding to microtubules: binding affinity dissection and incremental construction of a high-affinity analog of paclitaxel. Chem Biol. 2008;15:573–85. https://doi.org/10.1016/j.chembiol.2008.05.008.

    Article  CAS  PubMed  Google Scholar 

  26. Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH. Preclinical pharmacokinetics of paclitaxel and docetaxel, Anticancer. Drugs. 1998;9:1–17. https://doi.org/10.1097/00001813-199801000-00001.

    Article  CAS  Google Scholar 

  27. Huizing MT, Vermorken JB, Rosing H, ten BokkelHuinink WW, Mandjes I, Pinedo HM, Beijnen JH. Pharmacokinetics of paclitaxel and three major metabolites in patients with advanced breast carcinoma refractory to anthracycline therapy treated with a 3-hour paclitaxel infusion: A European Cancer Centre (ECC) trial. Ann Oncol. 1995;6:699–704. https://doi.org/10.1093/oxfordjournals.annonc.a059287.

    Article  CAS  PubMed  Google Scholar 

  28. Zasadil LM, Andersen KA, Yeum D, Rocque GB, Wilke LG, Tevaarwerk AJ, Raines RT, Burkard ME, Weaver BA. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Transl Med. 2014;6:1–11. https://doi.org/10.1126/scitranslmed.3007965.

    Article  CAS  Google Scholar 

  29. Smith RE, Brown AM, Mamounas EP, Anderson SJ, Lembersky BC, Atkins JH, Shibata HR, Baez L, DeFusco PA, Davila E, Tip** SJ, Bearden JD, Thirlwell MP. Randomized trial of a 3-hour versus 24-hour infusion of high-dose paclitaxel in patients with metastatic or locally advanced breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-26. J Clin Oncol. 1999;17:3403–11. https://doi.org/10.1200/JCO.1999.17.11.3403.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Nanotechnology Characterization Laboratory (NCL) for characterization support of this project; the formulation described herein was characterized by the NCL’s free Assay Cascade characterization service for cancer nanomedicines. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government. Additionally, authors thank the Tang Lab at the University of Wisconsin-Madison School of Pharmacy for generously allowing us to use the semi prep HPLC for production of standards for LCMS.

Funding

This project has been funded in part or in whole with federal funds from the NCI, NIH, under contract no 75N91019D00024 and R01 CA257837.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed on this publication contributed to the following categories: (1) conception or design of the work; or the acquisition, analysis, or interpretation of the data for the work; (2) draft of the work and revision for important intellectual content; (3) final approval of the version published; (4) agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Glen S. Kwon.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Aliasger Salem.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2741 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repp, L., Skoczen, S.L., Rasoulianboroujeni, M. et al. Plasma Stability and Plasma Metabolite Concentration–Time Profiles of Oligo(Lactic Acid)8-Paclitaxel Prodrug Loaded Polymeric Micelles. AAPS J 25, 39 (2023). https://doi.org/10.1208/s12248-023-00807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00807-4

Keywords

Navigation