Log in

Design and development of multivesicular liposomal depot delivery system for controlled systemic delivery of acyclovir sodium

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of the present study was to design a depot delivery system of acyclovir sodium using multivesicular liposomes (MVLs) to overcome the limitations of conventional therapies and to investigate its in vivo effectiveness for sustained delivery. MVLs of acyclovir were prepared by the reverse phase evaporation method. The loading efficiency of the MVLs (45%–82%) was found to be 3 to 6 times higher than conventional multilamellar vesicles (MLVs). The in vitro release of acyclovir from MVL formulations was found to be in a sustained manner and only 70% of drug was released in 96 hours, whereas conventional MLVs released 80% of drug in 16 hours. Following intradermal administration to Wistar rats, the MVL formulations showed effective plasma concentration for 48 hours compared with MLVs and free drug solution (12–16 hours). Cmax values of MVL formulations were significantly less (8.6–11.4 μg/mL) than MLV and free drug solution (12.5 μg/mL). The AUC0–48 of the MVL formulations was 1.5- and 3-fold higher compared with conventional liposomes and free drug solution, respectively. Overall, formulations containing phosphatidyl glycerol as negatively charged lipid showed better results. The MVL delivery system as an intradermal depot offers the advantage of a very high loading and controlled release of acyclovir for an extended period of time. The increase in AUC and decrease in Cmax reflects that the MVL formulations could reduce the toxic complications and limitations of conventional IV and oral therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miranda PD, Blum MR. Pharmacokinetics of acyclovir after intravenous and oral administration.Antimicrob Chemother. 1983;12:(Suppl. B):29–37.

    Google Scholar 

  2. Wagstaff AJ, Faulds D, Goa KL. Aciclovir. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy.Drugs. 1994;47:153–205.

    Article  CAS  Google Scholar 

  3. Bryson YJ, Dillon M, Lovett M, et al. Treatment of first episodes of genital herpes simplex virus infection with oral acyclovir. A randomized double-blind controlled trial in normal subjects.N Engl J Med. 1983;308:916–921.

    Article  CAS  Google Scholar 

  4. Goldberg LH, Kaufman R, Kurtz TO, et al. Long-term suppression of recurrent genital herpes with acyclovir.Arch Dermatol. 1993;129:582–587.

    Article  CAS  Google Scholar 

  5. Wade JC, Newton B, McLaren C, et al. Intravenous acyclovir to treat mucocutaneous herpes simplex virus infection after marrow transplantation: a double blind trial.Ann Intern Med. 1982;96:265–269.

    CAS  Google Scholar 

  6. Ran Y, Yalkowsky SH. Halothane, a novel solvent for the preparation of liposomes containing 2–4′-amino-3′-methylphenul benzothiazole (AMPB), an anticancer drug: a technical note.AAPS PharmSciTech. 2003;4:E20.

    Article  Google Scholar 

  7. Mumper RJ, Hoffman AS. The stabilization and release of hirudin from liposomes or lipid-assemblies coated with hydrophobically modified dextran.AAPS PharmSciTech. 2000;1:E3.

    Article  CAS  Google Scholar 

  8. Riaz M, Martin F, Weiner H. Liposomes as a drug delivery system.Drug Dev Ind Pharm. 1989;15:1523–1524.

    Article  Google Scholar 

  9. Lasic DD, Papadjopoulos D. Liposomes revisited.Science. 1995;267:1275–1276.

    Article  CAS  Google Scholar 

  10. Meyer J, Whitcomb L, Collins D. Efficient encapsulation of proteins within liposomes for slow releasein vivo.Biochim Biophys Res Commun. 1994;199:433–438.

    Article  CAS  Google Scholar 

  11. Kim T, Murdane S, Gruber A, Kim S. Sustained-release morphine for epidural analgesia in rats.Anesthesiology. 1996;85:331–338.

    Article  CAS  Google Scholar 

  12. Khatibi S, Howell SB, McCully C. Prolongation of action in CSF by encapsulation into multivesicular liposomes.Am Soc Clin Oncol. 1991;10:282–286.

    Google Scholar 

  13. Langston MV, Rampresad MP, Karali TT, Galluppi GR, Katre NV. Modulation of the sustained delivery of myelopoietin (Leridistim) encapsulated in multivesicular liposomes (DepoFoam).J Control Release. 2003;89:87–99.

    Article  CAS  Google Scholar 

  14. Kim S, Turker MS, Chi EY, Sela S, Martin GM. Preparation of multivesicular liposomes.Biochim Biophys Acta. 1983;728:339–348.

    Article  CAS  Google Scholar 

  15. Spector MS, Zasadzinshi JA, Sankaram MB. Technology of multivesicular liposomes, a model biliquid.Foam Langmuir. 1996;12:4704–4708.

    Article  CAS  Google Scholar 

  16. Katre NV, Asherman J, Schaefer H, Hora M. Multivesicular liposome (Depo Foam) technology for the sustained delivery of insulin like growth factor-I (IGF I).J Pharm Sci. 1998;87:1341–1345.

    Article  CAS  Google Scholar 

  17. Kim S. Depofoam mediated drug delivery into cerebrospinal fluid.Methods Neuroscience. 1994;21:118–131.

    CAS  Google Scholar 

  18. Kim T, Kim J, Kim S. Extended release formulation of morphine for subcutaneous administration.Cancer Chemother Pharmacol. 1993;33:187–190.

    Article  CAS  Google Scholar 

  19. Kim S, Howell S, inventors. Multivesicular liposomes having a biologically active substance encapsulated therein in the presence of a hydrochloride. US Patent 5 807 572. September 15, 1998.

  20. **ao CJ, Qi XR, Aini W, Wei SL. Preparation of cisplatin multivesicular liposomes and release of cisplatin from the liposomes in vitro.Yao Xue Xue Bao. 2003;38:133–137.

    CAS  Google Scholar 

  21. Chamberlain MC, Khatibi S, Kim JC, Howell SB, Chatelut E, Kim J. Treatment of leptomeningital metastasis with intraventricular administration of Depot cytarabine (DTC 101).Arch Neuro. 1993;50:261–264.

    CAS  Google Scholar 

  22. Katare NV, Asherman J, Schaeger H, Hora M. A multivesicular lipid based sustained release system for the delivery of therapeutic proteins. Proc. 8th Int. Pharm. Technol. Symp. Turkey 1996;20–21.

  23. Freeman DJ, Sheth NV, Spruance SL. Failure of topical acyclovir ointment to penetrate human skin.J Antimicrob Agents Chemother. 1986;29:730–732.

    CAS  Google Scholar 

  24. Han HK, Amidon GL. Targeted prodrug design to optimize drug delivery.AAPS PharmSci. 2000;2:E6.

    Article  CAS  Google Scholar 

  25. Bundgaard H, Jensen E, Falch E. Water-soluble, solution-stable, and biolabile N-substituted (aminomethyl) benzoate ester prodrugs of acyclovir.Pharm Res. 1991;8:1087–1093.

    Article  CAS  Google Scholar 

  26. Shao Z, Park G, Krishnamoorthy R, Mitra AK. The physicochemical properties, plasma enzymatic hydrolysis, and nasal absorption of acyclovir and its 2′-ester prodrugs.Pharm Res. 1994;11:237–242.

    Article  CAS  Google Scholar 

  27. Chikhale PJ, Venkatraghavan V, Bodor NS. Improved delivery through biological membranes LX: Intradermal targeting of acyclovir using redox-based chemical drug delivery systems.Drug Del. 1996;3:17–26.

    Article  CAS  Google Scholar 

  28. Krenitsky TA, Hall WW, de Miranda PD, Beauchamp LM Schaeffer HJ, Whiteman PD. o-Deoxyacyclovir: a xanthine oxidase-activated prodrug of acyclovir.Proc Natl Acad Sci USA. 1984;81:3209–3213.

    Article  CAS  Google Scholar 

  29. Shojaei AH, Zhou S, **aoling L. Transbuccal delivery of acyclovir (II): Feasibility, system design, andin vitro permeation studies.J Pharm Pharmceut Sci. 1998;1:66–73.

    CAS  Google Scholar 

  30. Law SL, Huang KJ, Chiang CH. Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption.J Control Release. 2000;63:135–140.

    Article  CAS  Google Scholar 

  31. Seth AK, Mishra A. Mathematical modelling of preparation of acyclovir liposomes: reverse phase evaporation method.J Pharm Sci. 2002;5:285–291.

    CAS  Google Scholar 

  32. Boulieu R, Gallant C, Silberstein N. Determination of acyclovir in human plasma by high-performance liquid chromatography.J Chromat. 1997;B693:233–236.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Jain.

Additional information

Published: September 20, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S.K., Jain, R.K., Chourasia, M.K. et al. Design and development of multivesicular liposomal depot delivery system for controlled systemic delivery of acyclovir sodium. AAPS PharmSciTech 6, 8 (2005). https://doi.org/10.1208/pt060108

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt060108

Keywords

Navigation