Log in

Different doses of phosphorus, calcium, and vitamin D in premature infants and their effect on bone mineralization: systematic review and meta-analysis

  • Review
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Purpose

This systematic review and meta-analysis aims to assess the impact of different doses of Ca, P, and vitamin D on bone mineralization in premature infants.

Methods

A systematic search (1990–2022) of MEDLINE (Ovid), Cochrane Library, Scopus, EMBASE, and CINAHL (EBSCO) was conducted. Randomized control trials and cohort studies, involving premature infants with birthweight ≤2.5 kg, who received supplementation and underwent bone mineral content reassessment, were included. Impact on growth indicators was also evaluated, but not systematically. Following the critical evaluation process, using PEDro scale and JBI critical appraisal checklist, high-quality studies were reviewed. Random effect meta-analyses (standardized mean difference) were performed to assess the effect of increased doses of Ca, P, and Vitamin D on bone health indicators.

Results

Eighteen studies were included, fifteen with enteral and three with parenteral nutrition regimen. The included studies’ mineral intake ranges presented high heterogeneity. The beneficial effect of higher doses of Ca and P on bone mineralization was evident in most studies, and unanimous when accompanied with higher doses of vitamin D, indicating the synergist effect of the three elements. Higher enteral nutrition doses of (a) Ca and P or (b) Ca, P, and vitamin D resulted in increased bone mineralization (standardized mean difference: 0.39; 95% CI 0.09, 0.69, and 1.72; 0.81, 2.16), respectively, while higher supplementation of only vitamin D presented no such effect (−0.01; −0.59, 0.56). Higher parenteral nutrition doses of Ca and P proved beneficial for bone mineralization (0.88; 0.34, 1.43). Higher enteral doses of all elements indicated no additional effect on growth.

Conclusions

Elevated intake of Ca (daily doses: Ca 95–135 mg/100 kcal) and P (55–95 mg/100 kcal) throughout enteral nutrition together with sufficient vitamin D intake might prove beneficial towards enhancing bone mineralization in preterm infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AAP:

American Academy of Pediatrics

BTT:

Bone transmission time

Ca:

Calcium

DXA:

Dual-energy X-ray absorptiometry

ELBW:

Extremely low birth weight

EN:

Enteral nutrition

ESPGHAN:

European Society of Paediatric Gastroenterology, Hepatology and Nutrition

HG:

High-dose group

LBW:

Low birth weight

LG:

Low-dose group

MBD:

Metabolic bone disease

P:

Phosphorus

PN:

Parenteral nutrition

RCTs:

Randomized control trials

SOS:

Speed of sound

VLBW:

Very low birth weight

WHO:

World Health Organization

References

  1. Rustico SE, Calabria AC, Garber SJ. Metabolic bone disease of prematurity. J Clin Transl Endocrinol. 2014;1:85–91. https://doi.org/10.1016/j.jcte.2014.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization. ICD-10: international statistical classification of diseases and related health problems: tenth revision. World Health Organization; 2004.

    Google Scholar 

  3. Backström MC, Kuusela A-L, Mäki R. Metabolic bone disease of prematurity. Ann Med. 1996;28:275–82. https://doi.org/10.3109/07853899608999080.

    Article  PubMed  Google Scholar 

  4. Takada M, Shimada M, Hosono S, et al. Trace elements and mineral requirements for very low birth weight infants in rickets of prematurity. Early Hum Dev. 1992;29:333–8. https://doi.org/10.1016/0378-3782(92)90188-m.

    Article  CAS  PubMed  Google Scholar 

  5. Tavares NHC, Coelho CG, Barreto SM, et al. Birth weight is related with bone mineral content in adulthood: results of ELSA-Brasil. Rev Saude Publica. 2022;56:103. https://doi.org/10.11606/s1518-8787.2022056004064.

    Article  PubMed  Google Scholar 

  6. Callréus M, McGuigan F, Åkesson K. Birth weight is more important for peak bone mineral content than for bone density: the PEAK-25 study of 1,061 young adult women. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2013;24:1347–55. https://doi.org/10.1007/s00198-012-2077-8.

    Article  Google Scholar 

  7. Mihatsch W, Thome U, Saenz de Pipaon M. Update on calcium and phosphorus requirements of preterm infants and recommendations for enteral mineral intake. Nutrients. 2021;13:1470. https://doi.org/10.3390/nu13051470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Faienza MF, D’Amato E, Natale MP, et al. Metabolic bone disease of prematurity: diagnosis and management. Front Pediatr. 2019;7:143. https://doi.org/10.3389/fped.2019.00143.

    Article  PubMed  PubMed Central  Google Scholar 

  9. van de Lagemaat M, Rotteveel J, van Weissenbruch MM, Lafeber HN. Increased gain in bone mineral content of preterm infants fed an isocaloric, protein-, and mineral-enriched postdischarge formula. Eur J Nutr. 2013;52:1781–5. https://doi.org/10.1007/s00394-012-0481-7.

    Article  CAS  PubMed  Google Scholar 

  10. Embleton ND, Jennifer Moltu S, Lapillonne A, et al. Enteral nutrition in preterm infants (2022): a position paper from the ESPGHAN Committee on Nutrition and Invited Experts. J Pediatr Gastroenterol Nutr. 2023;76:248. https://doi.org/10.1097/MPG.0000000000003642.

    Article  PubMed  Google Scholar 

  11. Abrams SA, Committee on Nutrition (2013) Calcium and vitamin D requirements of enterally fed preterm infants. Pediatrics 131:e1676-e1683. https://doi.org/10.1542/peds.2013-0420

  12. Mihatsch W, Fewtrell M, Goulet O, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: calcium, phosphorus and magnesium. Clin Nutr Edinb Scotl. 2018;37:2360–5. https://doi.org/10.1016/j.clnu.2018.06.950.

    Article  CAS  Google Scholar 

  13. Bronsky J, Campoy C, Braegger C, ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition (2018) ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: vitamins. Clin Nutr Edinb Scotl 37:2366–2378. https://doi.org/10.1016/j.clnu.2018.06.951

  14. Young L, Embleton ND, McGuire W. Nutrient-enriched formula versus standard formula for preterm infants following hospital discharge. Cochrane Database Syst Rev. 2016;12:CD004696. https://doi.org/10.1002/14651858.CD004696.pub5.

    Article  PubMed  Google Scholar 

  15. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cutland CL, Lackritz EM, Mallett-Moore T, et al. Low birth weight: case definition & guidelines for data collection, analysis, and presentation of maternal immunization safety data. Vaccine. 2017;35:6492–500. https://doi.org/10.1016/j.vaccine.2017.01.049.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fewtrell MS, Prentice A, Jones SC, et al. Bone mineralization and turnover in preterm infants at 8–12 years of age: the effect of early diet. J Bone Miner Res Off J Am Soc Bone Miner Res. 1999;14:810–20. https://doi.org/10.1359/jbmr.1999.14.5.810.

    Article  CAS  Google Scholar 

  18. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. https://doi.org/10.1186/s13643-016-0384-4.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Page MJ, McKenzie J, Bossuyt P, et al. Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. 2020; https://doi.org/10.31222/osf.io/jb4dx.

  20. Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83:713–21. https://doi.org/10.1093/ptj/83.8.713.

    Article  PubMed  Google Scholar 

  21. Cashin AG, McAuley JH. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J Physiother. 2020;66:59. https://doi.org/10.1016/j.jphys.2019.08.005.

    Article  PubMed  Google Scholar 

  22. Tufanaru C, Munn Z, Aromataris E, et al. Chapter 3: Systematic reviews of effectiveness - JBI Manual for Evidence Synthesis - JBI Global Wiki. JBI: JBI Manual for Evidence Synthesis; 2020.

    Google Scholar 

  23. Kim SY, Yi DY. Components of human breast milk: from macronutrient to microbiome and microRNA. Clin Exp Pediatr. 2020;63:301–9. https://doi.org/10.3345/cep.2020.00059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Higgins J, Thomas J, Chandler J, et al (2022) Cochrane handbook for systematic reviews of interventions version 6.3 (updated February 2022). In: Cochrane. https://training.cochrane.org/handbook. Accessed 25 Mar 2023

    Google Scholar 

  25. Faerk J, Petersen S, Peitersen B, Michaelsen KF. Diet and bone mineral content at term in premature infants. Pediatr Res. 2000;47:148–56. https://doi.org/10.1203/00006450-200001000-00025.

    Article  CAS  PubMed  Google Scholar 

  26. Mazouri A, Khosravi N, Bordbar A, et al. Does adding intravenous phosphorus to parenteral nutrition has any effects on calcium and phosphorus metabolism and bone mineral content in preterm neonates? Acta Med Iran. 2017;55:395–8.

    PubMed  Google Scholar 

  27. Koo WWK, Hockman EM. Posthospital discharge feeding for preterm infants: effects of standard compared with enriched milk formula on growth, bone mass, and body composition. Am J Clin Nutr. 2006;84:1357–64. https://doi.org/10.1093/ajcn/84.6.1357.

    Article  CAS  PubMed  Google Scholar 

  28. Lapillonne A, Salle BL, Glorieux FH, Claris O. Bone mineralization and growth are enhanced in preterm infants fed an isocaloric, nutrient-enriched preterm formula through term. Am J Clin Nutr. 2004;80:1595–603. https://doi.org/10.1093/ajcn/80.6.1595.

    Article  CAS  PubMed  Google Scholar 

  29. Schanler RJ, Abrams SA. Postnatal attainment of intrauterine macromineral accretion rates in low birth weight infants fed fortified human milk. J Pediatr. 1995;126:441–7. https://doi.org/10.1016/s0022-3476(95)70465-5.

    Article  CAS  PubMed  Google Scholar 

  30. Picaud J-C, Decullier E, Plan O, et al. Growth and bone mineralization in preterm infants fed preterm formula or standard term formula after discharge. J Pediatr. 2008;153(616–621):621.e1–2. https://doi.org/10.1016/j.jpeds.2008.05.042.

    Article  CAS  Google Scholar 

  31. Bishop NJ, King FJ, Lucas A. Increased bone mineral content of preterm infants fed with a nutrient enriched formula after discharge from hospital. Arch Dis Child. 1993;68:573–8. https://doi.org/10.1136/adc.68.5_spec_no.573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chan GM. Growth and bone mineral status of discharged very low birth weight infants fed different formulas or human milk. J Pediatr. 1993;123:439–43. https://doi.org/10.1016/s0022-3476(05)81754-8.

    Article  CAS  PubMed  Google Scholar 

  33. Prestridge LL, Schanler RJ, Shulman RJ, et al. Effect of parenteral calcium and phosphorus therapy on mineral retention and bone mineral content in very low birth weight infants. J Pediatr. 1993;122:761–8. https://doi.org/10.1016/s0022-3476(06)80023-5.

    Article  CAS  PubMed  Google Scholar 

  34. Cooke RJ, McCormick K, Griffin IJ, et al. Feeding preterm infants after hospital discharge: effect of diet on body composition. Pediatr Res. 1999;46:461–4. https://doi.org/10.1203/00006450-199910000-00017.

    Article  CAS  PubMed  Google Scholar 

  35. De Curtis M, Pieltain C, Rigo J. Body composition in preterm infants fed standard term or enriched formula after hospital discharge. Eur J Nutr. 2002;41:177–82. https://doi.org/10.1007/s00394-002-0374-2.

    Article  CAS  PubMed  Google Scholar 

  36. Anderson-Berry A, Thoene M, Wagner J, et al. Randomized trial of two doses of vitamin D3 in preterm infants <32 weeks: dose impact on achieving desired serum 25(OH)D3 in a NICU population. PloS One. 2017;12:e0185950. https://doi.org/10.1371/journal.pone.0185950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Natarajan CK, Sankar MJ, Agarwal R, et al. Trial of daily vitamin D supplementation in preterm infants. Pediatrics. 2014;133:e628–34. https://doi.org/10.1542/peds.2012-3395.

    Article  PubMed  Google Scholar 

  38. Backström MC, Mäki R, Kuusela AL, et al. Randomised controlled trial of vitamin D supplementation on bone density and biochemical indices in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1999;80:F161–6. https://doi.org/10.1136/fn.80.3.f161.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alpay F, Unay B, Narin Y, et al. Measurement of bone mineral density by dual energy X-ray absorptiometry in preterm infants fed human milk or formula. Eur J Pediatr. 1998;157:505–7. https://doi.org/10.1007/s004310050864.

    Article  CAS  PubMed  Google Scholar 

  40. Pereira-da-Silva L, Costa A, Pereira L, et al. Early high calcium and phosphorus intake by parenteral nutrition prevents short-term bone strength decline in preterm infants. J Pediatr Gastroenterol Nutr. 2011;52:203–9. https://doi.org/10.1097/MPG.0b013e3181f8b295.

    Article  CAS  PubMed  Google Scholar 

  41. Litmanovitz I, Eliakim A, Arnon S, et al. Enriched post-discharge formula versus term formula for bone strength in very low birth weight infants: a longitudinal pilot study. J Perinat Med. 2007;35:431–5. https://doi.org/10.1515/JPM.2007.095.

    Article  PubMed  Google Scholar 

  42. ESPGHAN Committee on Nutrition, Aggett PJ, Agostoni C, et al. Feeding preterm infants after hospital discharge: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2006;42:596–603. https://doi.org/10.1097/01.mpg.0000221915.73264.c7.

    Article  Google Scholar 

  43. Shaw JCL. Evidence for defective skeletal mineralization in low-birthweight infants: the absorption of calcium and fat. Pediatrics. 1976;57:16–25. https://doi.org/10.1542/peds.57.1.16.

    Article  CAS  PubMed  Google Scholar 

  44. Golden NH, Abrams SA, Committee on Nutrition (2014) Optimizing bone health in children and adolescents. Pediatrics 134:e1229-e1243. https://doi.org/10.1542/peds.2014-2173

  45. Adnan M, Wu S-Y, Khilfeh M, Davis V. Vitamin D status in very low birth weight infants and response to vitamin D intake during their NICU stays: a prospective cohort study. J Perinatol Off J Calif Perinat Assoc. 2022;42:209–16. https://doi.org/10.1038/s41372-021-01238-9.

    Article  CAS  Google Scholar 

  46. Yang Y, Li Z, Yan G, et al. Effect of different doses of vitamin D supplementation on preterm infants - an updated meta-analysis. J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. 2018;31:3065–74. https://doi.org/10.1080/14767058.2017.1363731.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Mary Hickson for her constructive suggestions and support of preparing this research project.

Author information

Authors and Affiliations

Authors

Contributions

A Vervesou: conceptualization, methodology, data collection, data synthesis, meta-analysis, investigation, resources data curation, writing original draft, project administration. DV Diamantis: methodology, data collection, data synthesis, meta-analysis, investigation, data curation, writing review, and editing. K Maslin, JH Carroll: conceptualization, methodology, writing review and editing, supervision.

Corresponding author

Correspondence to Aikaterini Vervesou.

Ethics declarations

Ethics approval

An ethics statement is not applicable because this study is based exclusively on published literature.

Consent to participate

Not appliable

Consent for publication

Not appliable

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vervesou, A., Diamantis, D.V., Maslin, K. et al. Different doses of phosphorus, calcium, and vitamin D in premature infants and their effect on bone mineralization: systematic review and meta-analysis. Nutrire 48, 48 (2023). https://doi.org/10.1186/s41110-023-00235-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-023-00235-6

Keywords

Navigation