Background

The Golgi apparatus (GA) in mammalian cells forms a continuous ribbon of laterally interconnected stacks of flat cisternae. The construction of GA architecture relies on posttranslational modifications of soluble Golgi assembly factors (GAFs) and is subjected to dynamic changes along a cell cycle [2]. At G2 phase, phosphorylation-induced inactivation of GRASP65 [7] or GRASP55 [15], two GAFs engaged in stacking and linking cis- and trans-Golgi respectively, leads to the unlinking of the inter-connected stacks of the organelle. At early mitosis, further phosphorylation of the two GRASPs causes GA unstacking [41,

Availability of data and materials

The data used to support the findings of this study are included within the article.

Abbreviations

GA:

Golgi apparatus

GAFs:

Golgi assembly factors

WT:

Wild type

ribbon:

Crescent ribbon shape

ER:

Endoplasmic reticulum

Brefeldin A:

BFA

References

  1. Altan-Bonnet N, Phair RD, Polishchuk RS, Weigert R, Lippincott-Schwartz J. A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis. Proc Natl Acad Sci U S A. 2003;100(23):13314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ayala I, Mascanzoni F, Colanzi A. The Golgi ribbon: mechanisms of maintenance and disassembly during the cell cycle. Biochem Soc Trans. 2020;48(1):245–56.

    Article  CAS  PubMed  Google Scholar 

  3. Bachert C, Fimmel C, Linstedt AD. Endosomal trafficking and proprotein convertase cleavage of cis Golgi protein GP73 produces marker for hepatocellular carcinoma. Traffic. 2007;8(10):1415–23.

    Article  CAS  PubMed  Google Scholar 

  4. Bai M, Ni J, Wu J, Wang B, Shen S, Yu L. A novel mechanism for activation of Aurora-A kinase by Ajuba. Gene. 2014;543(1):133–9.

    Article  CAS  PubMed  Google Scholar 

  5. Barr FA, Puype M, Vandekerckhove J, Warren G. GRASP65, a protein involved in the stacking of Golgi cisternae. Cell. 1997;91(2):253–62.

    Article  CAS  PubMed  Google Scholar 

  6. Cardenas J, Rivero S, Goud B, Bornens M, Rios RM. Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms. BMC Biol. 2009;7:56 Published 2009 Aug 28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cervigni RI, Bonavita R, Barretta ML, et al. JNK2 controls fragmentation of the Golgi complex and the G2/M transition through phosphorylation of GRASP65. J Cell Sci. 2015;128(12):2249–60.

    Article  CAS  PubMed  Google Scholar 

  8. Chen JM, Chiu SC, Wei TY, et al. The involvement of nuclear factor-κappaB in the nuclear targeting and cyclin E1 upregulating activities of hepatoma upregulated protein. Cell Signal. 2015;27(1):26–36.

    Article  CAS  PubMed  Google Scholar 

  9. Chen Y, Chen PL, Chen CF, Sharp ZD, Lee WH. Thyroid hormone, T3-dependent phosphorylation and translocation of Trip230 from the Golgi complex to the nucleus. Proc Natl Acad Sci U S A. 1999;96(8):4443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chia J, Goh G, Racine V, Ng S, Kumar P, Bard F. RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells. Mol Syst Biol. 2012;8:629.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chiu SC, Huang YJ, Wei TW, et al. The PRMT5/HURP axis retards Golgi repositioning by stabilizing acetyl-tubulin and Golgi apparatus during cell migration. J Cell Physiol. 2022;237(1):1033–43.

    Article  CAS  PubMed  Google Scholar 

  12. Dirac-Svejstrup AB, Shorter J, Waters MG, Warren G. Phosphorylation of the vesicle-tethering protein p115 by a casein kinase II-like enzyme is required for Golgi reassembly from isolated mitotic fragments [published correction appears in J Cell Biol 2000 Aug 21;150(4):following 936]. J Cell Biol. 2000;150(3):475–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dodson CA, Bayliss R. Activation of Aurora-A kinase by protein partner binding and phosphorylation are independent and synergistic. J Biol Chem. 2012;287(2):1150–7.

    Article  CAS  PubMed  Google Scholar 

  14. Drin G, Morello V, Casella JF, Gounon P, Antonny B. Asymmetric tethering of flat and curved lipid membranes by a golgin. Science. 2008;320(5876):670–3.

    Article  CAS  PubMed  Google Scholar 

  15. Duran JM, Kinseth M, Bossard C, et al. The role of GRASP55 in Golgi fragmentation and entry of cells into mitosis. Mol Biol Cell. 2008;19(6):2579–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng Y, Yu W, Li X, et al. Structural insight into Golgi membrane stacking by GRASP65 and GRASP55 proteins. J Biol Chem. 2013;288(39):28418–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gilbert CE, Sztul E, Machamer CE. Commonly used trafficking blocks disrupt ARF1 activation and the localization and function of specific Golgi proteins. Mol Biol Cell. 2018;29(8):937–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hassan M, El Khattouti A, Ejaeidi A, et al. Elevated expression of hepatoma up-regulated protein inhibits γ-irradiation-induced apoptosis of prostate cancer cells. J Cell Biochem. 2016;117(6):1308–18.

    Article  CAS  PubMed  Google Scholar 

  19. Hirota T, Kunitoku N, Sasayama T, et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell. 2003;114(5):585–98.

    Article  CAS  PubMed  Google Scholar 

  20. Hou Z, Peng H, Ayyanathan K, et al. The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol Cell Biol. 2008;28(10):3198–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang YJ, Chiu SC, Tseng JS, et al. The JMJD6/HURP axis promotes cell migration via NF-κB-dependent centrosome repositioning and Cdc42-mediated Golgi repositioning. J Cell Physiol. 2022;237(12):4517–30.

    Article  CAS  PubMed  Google Scholar 

  22. Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM. GMAP-210, A cis-Golgi network-associated protein, is a minus end microtubule-binding protein [published correction appears in J Cell Biol 2002 Aug 5;158(3):593. J Cell Biol. 1999;145(1):83–98. https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRIP11.

  23. Jackson CL. Activators and effectors of the small G protein Arf1 in regulation of Golgi dynamics during the cell division cycle. Front Cell Dev Biol. 2018;6:29 Published 2018 Mar 26.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim H, Ronai ZA. PRMT5 function and targeting in cancer. Cell Stress. 2020;4(8):199–215 Published 2020 Jul 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kimura M, Takagi S, Nakashima S. Aurora A regulates the architecture of the Golgi apparatus. Exp Cell Res. 2018;367(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  26. Klumperman J. Architecture of the mammalian Golgi. Cold Spring Harb Perspect Biol. 2011;3(7):a005181 Published 2011 Jul 1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Maag RS, Mancini M, Rosen A, Machamer CE. Caspase-resistant Golgin-160 disrupts apoptosis induced by secretory pathway stress and ligation of death receptors. Mol Biol Cell. 2005;16(6):3019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mao L, Li N, Guo Y, et al. AMPK phosphorylates GBF1 for mitotic Golgi disassembly. J Cell Sci. 2013;126(Pt 6):1498–505.

    CAS  PubMed  Google Scholar 

  29. McCormack JJ, Bruche S, Ouadda ABD, et al. The scaffold protein Ajuba suppresses CdGAP activity in epithelia to maintain stable cell-cell contacts. Sci Rep. 2017;7(1):9249 Published 2017 Aug 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McLean IW, Nakane PK. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974;22(12):1077–83.

    Article  CAS  PubMed  Google Scholar 

  31. Morohashi Y, Balklava Z, Ball M, Hughes H, Lowe M. Phosphorylation and membrane dissociation of the ARF exchange factor GBF1 in mitosis. Biochem J. 2010;427(3):401–12 Published 2010 Apr 14.

    Article  CAS  PubMed  Google Scholar 

  32. Nakamura N, Lowe M, Levine TP, Rabouille C, Warren G. The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell. 1997;89(3):445–55.

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura N, Rabouille C, Watson R, et al. Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol. 1995;131(6 Pt 2):1715–26. https://doi.org/10.1083/jcb.131.6.1715.

    Article  CAS  PubMed  Google Scholar 

  34. Puthenveedu MA, Bachert C, Puri S, Lanni F, Linstedt AD. GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol. 2006;8(3):238–48.

    Article  CAS  PubMed  Google Scholar 

  35. Ríos RM, Sanchís A, Tassin AM, Fedriani C, Bornens M. GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell. 2004;118(3):323–35.

    Article  PubMed  Google Scholar 

  36. Robineau S, Chabre M, Antonny B. Binding site of brefeldin A at the interface between the small G protein ADP-ribosylation factor 1 (ARF1) and the nucleotide-exchange factor Sec7 domain. Proc Natl Acad Sci U S A. 2000;97(18):9913–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sciaky N, Presley J, Smith C, et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol. 1997;139(5):1137–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shorter J, Watson R, Giannakou ME, Clarke M, Warren G, Barr FA. GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J. 1999;18(18):4949–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Silljé HH, Nagel S, Körner R, Nigg EA. HURP is a Ran-importin beta-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol. 2006;16(8):731–42.

    Article  PubMed  Google Scholar 

  40. Sönnichsen B, Watson R, Clausen H, Misteli T, Warren G. Sorting by COP I-coated vesicles under interphase and mitotic conditions. J Cell Biol. 1996;134(6):1411–25.

    Article  PubMed  Google Scholar 

  41. Tang D, Yuan H, Vielemeyer O, Perez F, Wang Y. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly. Biol Open. 2012;1(12):1204–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsou AP, Yang CW, Huang CY, et al. Identification of a novel cell cycle regulated gene, HURP, overexpressed in human hepatocellular carcinoma. Oncogene. 2003;22(2):298–307.

    Article  CAS  PubMed  Google Scholar 

  43. Uhlén M, Björling E, Agaton C, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4(12):1920–32.

    Article  PubMed  Google Scholar 

  44. Veenendaal T, Jarvela T, Grieve AG, van Es JH, Linstedt AD, Rabouille C. GRASP65 controls the cis Golgi integrity in vivo. Biol Open. 2014;3(6):431–43 Published 2014 May 2.

    Article  PubMed  PubMed Central  Google Scholar 

  45. **ang Y, Wang Y. GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J Cell Biol. 2010;188(2):237–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yadav S, Puthenveedu MA, Linstedt AD. Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell. 2012;23(1):153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ye F, Tan L, Yang Q, et al. HURP regulates chromosome congression by modulating kinesin Kif18A function. Curr Biol. 2011;21(18):1584–91.

    Article  CAS  PubMed  Google Scholar 

  48. Yu CT, Hsu JM, Lee YC, Tsou AP, Chou CK, Huang CY. Phosphorylation and stabilization of HURP by Aurora-A: implication of HURP as a transforming target of Aurora-A. Mol Cell Biol. 2005;25(14):5789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou Z, Sun X, Zou Z, et al. PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130. Cell Res. 2010;20(9):1023–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ministry of Science and Technology (Taiwan), Taichung Veterans General Hospital (Taiwan), China Medical University (Taiwan), and China Medical Hospital (Taiwan).

Funding

This work was supported by the grants from the Ministry of Science and Technology (MOST 108–2320-B-260–001, MOST 109–2314-B-039–047-MY3, 111–2320-B-260–001), the Taichung Veterans General Hospital-National Chi Nan University Joint Research Program (TCVGH-NCNU 1107903, TCVGH-NCNU 1097903), the China Medical University and Hospital grant (DMR-110–140) awarded to Dr. Shao-Chih Chiu, and the Taichung Veterans General Hospital (TCVGH-1093207D).

Author information

Authors and Affiliations

Authors

Contributions

Yu-Ting Amber Liao, **n-Ting Yang, Tong-You Wade Wei, and Jo-Mei Maureen Chen performed most of the experiments, Chun-Chih Jared Liu, Yu-Ting Jenny Huang, Yi-Chun Kuo, Chang-**n Wan, Chiao-Yun Cheng, Chen-Yu Chu and Yun-Ru Jaoying Huang assisted with some other experiments. Shao-Chih Chiu and Chang-Tze Ricky Yu supervised the study, and Chang-Tze Ricky Yu conceived and wrote the paper. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Chang-Tze Ricky Yu.

Ethics declarations

Ethics approval and consent to participate

Not applicable. (We did not perform experiment on animal or collect patient information).

Consent for publication

All authors have authorized that he/she will notify of his/her actions and the publication of this paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: Supplementary Figure 1.

Deduction of PRMT5-dependent methylation determinant sequence. Supplementary Figure 2. The HURP m122 antibodies and nm122 antibodies almost did not cross react. Supplementary Figure 3. Antibody specificity of HURP p725 and np725.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, SC., Yang, XT., Wei, TY.W. et al. The crescent-like Golgi ribbon is shaped by the Ajuba/PRMT5/Aurora-A complex-modified HURP. Cell Commun Signal 21, 156 (2023). https://doi.org/10.1186/s12964-023-01167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12964-023-01167-4

Keywords