Background

In rice varietal improvement programs, the texture of cooked rice is primarily indicated by amylose content (AC) [Juliano 2006; Juliano et al. 2009]. This parameter is used to classify rice into five AC classes associated with cooked rice texture: waxy (0–2%), very low (3–9%), low (10–19%), intermediate (20–25%), and high (> 25%) [Kumar and Khush 1986a; Kumar and Khush 1986b]. However, samples in the same AC class could have different sensory profiles [Champagne et al. 2014; Pang et al. 2016]. Hence, rice variety development and improvement programs use these AC, GT, and GC indicators to develop breeding targets for specific markets. Other attributes, such as pasting properties and mechanical textural properties of rice varieties, also provide further insights into cooked rice texture. However, many of the findings still point to associations of texture with AC [e.g., Li et al. 2017; Hori et al. 2016; Tran et al. 2011; Li et al. 2016]; thereby effectively masking associations among these attributes with the diversity of rice germplasm within an AC class. It must be noted that many of the past studies used narrow ranges of germplasm to perform associations within each AC class [e.g.,Yang et al. 2014; Tuaño et al. 2014; Garcia et al. 2011].

One of the best ways to determine the associations of other cooking quality factors with texture is to make AC a constant in studies. An approach is to focus analyses on waxy rice varieties, which have negligible concentrations of amylose. However, the global waxy rice market is small (only 1% of the rice trade); thus the waxy rice approach is not widely used [Calpe 2004]. The biggest market share for rice comes from those who prefer varieties with intermediate to high AC in South Asia and South East Asia [Tuaño et al. 2016; Calingacion et al.

$$ f\left( **,k\right)=\beta k\cdotp **, $$
(1)

where f(Xi,k) is the score associated with the sample i assigned to cluster k (a non-binary categorical response variable), βk is the vector of regression coefficients associated with cluster k, and Xi is the vector of explanatory variables describing sample i.

Tests of random forests (RF) were conducted with 500 trees and three variables randomly selected at each split. These random forests generated standardised scores that indicated the importance of each of the nine retained variables (determined by MLR) in classifying samples into the three clusters and also identified the most important variables per cluster. To rank the variables according to importance, the random forest algorithm determined the magnitude of increase in the prediction error (i.e., decrease in prediction accuracy) when the out-of-bag data were permuted (or excluded) for one variable while data for all other variables were held constant [Liaw and Wiener 2002; Louppe et al. 2013]. Hence, variables that had higher changes in magnitude of increases in prediction error were deemed more important than those variables that tend to have lower magnitudes.

Sensory evaluation

Five samples from each cluster were selected for sensory evaluation using the texture profiling method [Lyon et al. 2000]. Milled grains from each sample were cooked using a 1:1 (v/v) ratio with water in rice cookers (0.6 L, Micromatic Model MRC-350). After the rice was cooked to completion, the rice was mixed, ensuring that the grains touching the sides and the bottom were undisturbed. Sub-samples were distributed into glass custard cups (pre-labelled with three-digit codes), sealed with a plastic lid, and then monadically presented for sensory evaluation to a previously trained set of panellists. Along with the sample, a tablespoon and a cup of drinking water were provided. To ensure that the samples were kept warm during the evaluation, the samples were kept in the rice cooker (at the “Warm” setting) and only placed in sample cups once the panellists requested for the samples. A rice breeding line, IR06N155 (harvested in the dry season of 2013 at IRRI’s Long-Term Continuous Crop** Experiment), was used as a standard. It was served to the panellists six times, randomly distributed in different rice tasting sessions.

The sensory panelists who participated in sensory evaluation were selected based on their availability and previous training in sensory descriptive profiling. The training phase included a battery of difference tests, sample and method familiarisation, and adjustment of the lexicon based on the panelists’ contexts [Champagne et al. 1996]. The R software was used for statistical analyses. Means and standard deviations were calculated per cluster.