Log in

Perioperative Intervention by β-Blockade and NF-κB Suppression Reduces the Recurrence Risk of Endometriosis in Mice Due to Incomplete Excision

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Despite the demonstrated efficacy of surgical treatment of endometriosis, recurrence after surgery still remains a formidable challenge. Surgery, especially when performed repeatedly, decreases ovarian reserve. Clearly, control of recurrence is an unmet medical need. So far nearly all efforts to control recurrence have been devoted to the identification of risk factors, biomarkers, and postoperative medication. One area that has been completely overlooked is the possibility of perioperative intervention. In this study, we tested the hypothesis that perioperative use of a nonspecific β-blocker and/or a nuclear factor-κB (NF-κB) inhibitor can retard the growth of residual endometriotic lesions that are left intact in the primary surgery. We established a mouse model of recurrence due to incomplete lesion removal by deliberately leaving residual lesions intact in the primary excision surgery. One hour before and 24 hours after the surgery, mice were either untreated or treated with andrographolide, propranolol, or both. Two weeks after the primary surgery, all mice were sacrificed and all lesions were excised and evaluated for immunohistochemistry analysis. We found that perioperative use of andrographolide and/or propranolol significantly decelerated the growth of residual lesions that were intentionally left out during the primary surgery. The perioperative intervention also significantly attenuated the generalized hyperalgesia resulting from the presence of residual lesions. It also inhibited the activation of the adrenergic receptor β2 signaling, resulting in reduced angiogenesis, epithelial—mesenchymal transition, fibroblast-to-myofibroblast transdifferentiation as well as NF-κB suppression and progesterone receptor isoform B induction. These data strongly suggest that perioperative use of β-blockers and/or NF-κB inhibitors may reduce the risk of recurrence in endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapron C, Vercellini P, Barakat H, Vieira M, Dubuisson JB. Management of ovarian endometriomas. Hum Reprod Update. 2002;8(6):591–597.

    Article  CAS  PubMed  Google Scholar 

  2. Practice Committee of the American Society for Reproductive Medicine. Treatment of pelvic pain associated with endometriosis: a committee opinion. Fertil Steril. 2014;101(4):927–935.

    Article  Google Scholar 

  3. Garry R. The effectiveness of laparoscopic excision of endometriosis. Curr Opin Obstet Gynecol. 2004;16(4):299–303.

    Article  PubMed  Google Scholar 

  4. Evers JL, Dunselman GA, Land JA, Bouckaert PX. Management of recurrent endometriosis. In: Couinho E, Spinola P, DeMoura LH, eds. Progress in the Management of Endometriosis. London, England: Partheon; 1995:291–297.

    Google Scholar 

  5. Garcia-Velasco JA, Somigliana E. Management of endometriomas in women requiring IVF: to touch or not to touch. Hum Reprod. 2009;24(3):496–501.

    Article  PubMed  Google Scholar 

  6. de Ziegler D, Borghese B, Chapron C. Endometriosis and infertility: pathophysiology and management. Lancet. 2010;376(9742):730–738.

    Article  PubMed  CAS  Google Scholar 

  7. Coccia ME, Rizzello F, Mariani G, Bulletti C, Palagiano A, Scarselli G. Ovarian surgery for bilateral endometriomas influences age at menopause. Hum Reprod. 2011;26(11):3000–3007.

    Article  PubMed  Google Scholar 

  8. Vercellini P, Somigliana E, Daguati R, Barbara G, Abbiati A, Fedele L. The second time around: reproductive performance after repetitive versus primary surgery for endometriosis. Fertil Steril. 2009;92(4):1253–1255.

    Article  PubMed  Google Scholar 

  9. Guo SW. Recurrence of endometriosis and its control. Hum Reprod Update. 2009;15(4):441–461.

    Article  PubMed  Google Scholar 

  10. Vercellini P, Somigliana E, Vigano P, De Matteis S, Barbara G, Fedele L. Post-operative endometriosis recurrence: a plea for prevention based on pathogenetic, epidemiological and clinical evidence. Reprod Biomed Online. 2010;21(2):259–265.

    Article  PubMed  Google Scholar 

  11. Liu X, Yuan L, Shen F, Zhu Z, Jiang H, Guo SW. Patterns of and risk factors for recurrence in women with ovarian endometriomas. Obstet Gynecol. 2007;109(6):1411–1420.

    Article  PubMed  Google Scholar 

  12. Takamura M, Koga K, Osuga Y, et al. Post-operative oral contraceptive use reduces the risk of ovarian endometrioma recurrence after laparoscopic excision. Hum Reprod. 2009;24(12):3042–3048.

    Article  CAS  PubMed  Google Scholar 

  13. Shen F, Liu X, Geng JG, Guo SW. Increased immunoreactivity to SLIT/ROBO1 in ovarian endometriomas: a likely constituent biomarker for recurrence. Am J Pathol. 2009;175(2):479–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shen F, Wang Y, Lu Y, Yuan L, Liu X, Guo SW. Immunoreactivity of progesterone receptor isoform B and nuclear factor kappa-B as biomarkers for recurrence of ovarian endometriomas. Am J Obstet Gynecol. 2008;199(5):486.e1–486.e10.

    Article  CAS  Google Scholar 

  15. Yuan L, Shen F, Lu Y, Liu X, Guo SW. Cyclooxygenase-2 overexpression in ovarian endometriomas is associated with higher risk of recurrence. Fertil Steril. 2009;91(4 suppl):1303–1306.

    Article  PubMed  CAS  Google Scholar 

  16. Li F, Alderman MH III, Tal A, et al. Hematogenous dissemination of mesenchymal stem cells from endometriosis. Stem Cells. 2018;36(6):881–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nisolle-Pochet M, Casanas-Roux F, Donnez J. Histologic study of ovarian endometriosis after hormonal therapy. Fertil Steril. 1988;49(3):423–426.

    Article  CAS  PubMed  Google Scholar 

  18. Vignali M, Bianchi S, Candiani M, Spadaccini G, Oggioni G, Busacca M. Surgical treatment of deep endometriosis and risk of recurrence. J Minim Invasive Gynecol. 2005;12(6):508–513.

    Article  PubMed  Google Scholar 

  19. Exacoustos C, Zupi E, Amadio A, et al. Recurrence of endometriomas after laparoscopic removal: sonographic and clinical follow-up and indication for second surgery. J Minim Invasive Gynecol. 2006;13(4):281–288.

    Article  PubMed  Google Scholar 

  20. Nirgianakis K, McKinnon B, Imboden S, Knabben L, Gloor B, Mueller MD. Laparoscopic management of bowel endometriosis: resection margins as a predictor of recurrence. Acta Obstet Gynecol Scand. 2014;93(12):1262–1267.

    Article  PubMed  Google Scholar 

  21. Meuleman C, Tomassetti C, D’Hoore A, et al. Surgical treatment of deeply infiltrating endometriosis with colorectal involvement. Hum Reprod Update. 2011;17(3):311–326.

    Article  PubMed  Google Scholar 

  22. Goldfarb Y, Sorski L, Benish M, Levi B, Melamed R, Ben-Eliyahu S. Improving postoperative immune status and resistance to cancer metastasis: a combined perioperative approach of immunostimulation and prevention of excessive surgical stress responses. Ann Surg. 2011;253(4):798–810.

    Article  PubMed  Google Scholar 

  23. Lutgendorf SK, Cole S, Costanzo E, et al. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res. 2003;9(12):4514–4521.

    CAS  PubMed  Google Scholar 

  24. Lee JW, Shahzad MM, Lin YG, et al. Surgical stress promotes tumor growth in ovarian carcinoma. Clin Cancer Res. 2009;15(8):2695–2702.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Long Q, Liu X, Guo SW. Surgery accelerates the development of endometriosis in mice. Am J Obstet Gynecol. 2016;215(3):320.e1–320.e15.

    Article  Google Scholar 

  26. Liu X, Long Q, Guo SW. Surgical history and the risk of endometriosis: a hospital-based case-control study. Reprod Sci. 2016;23(9):1217–1224.

    Article  PubMed  CAS  Google Scholar 

  27. Benish M, Bartal I, Goldfarb Y, et al. Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol. 2008;15(7):2042–2052.

    Article  PubMed  Google Scholar 

  28. Shaashua L, Shabat-Simon M, Haldar R, et al. Perioperative COX-2 and beta-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-ii randomized trial. Clin Cancer Res. 2017;23(16):4651–4661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo SW. Nuclear factor-kappab (NF-kappaB): an unsuspected major culprit in the pathogenesis of endometriosis that is still at large? Gynecol Obstet Invest. 2007;63(2):71–97.

    Article  CAS  PubMed  Google Scholar 

  30. Gonzalez-Ramos R, Van Langendonckt A, Defrere S, et al. Involvement of the nuclear factor-kappaB pathway in the pathogenesis of endometriosis. Fertil Steril. 2010;94(6):1985–1994.

    Article  CAS  PubMed  Google Scholar 

  31. Peng Y, Wang Y, Tang N, et al. Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway. J Exp Clin Cancer Res. 2018;37(1):248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li B, Chen M, Liu X, Guo SW. Constitutive and tumor necrosis factor-alpha-induced activation of nuclear factor-kappaB in adenomyosis and its inhibition by andrographolide. Fertil Steril. 2013;100(2):568–577.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Q, Duan J, Liu X, Guo SW. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16.

    Article  PubMed  CAS  Google Scholar 

  34. Long Q, Liu X, Qi Q, Guo SW. Chronic stress accelerates the development of endometriosis in mouse through adrenergic receptor beta2. Hum Reprod. 2016;31(11):2506–2519.

    Article  CAS  PubMed  Google Scholar 

  35. National Research Council. Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academies Press; 1996.

    Google Scholar 

  36. Somigliana E, Vigano P, Rossi G, Carinelli S, Vignali M, Panina-Bordignon P. Endometrial ability to implant in ectopic sites can be prevented by interleukin-12 in a murine model of endometriosis. Hum Reprod. 1999;14(12):2944–2950.

    Article  CAS  PubMed  Google Scholar 

  37. Somigliana E, Vigano P, Filardo P, Candiani M, Vignali M, Panina-Bordignon P. Use of knockout transgenic mice in the study of endometriosis: insights from mice lacking beta(2)-microglobulin and interleukin-12p40. Fertil Steril. 2001;75(1):203–206.

    Article  CAS  PubMed  Google Scholar 

  38. Bacci M, Capobianco A, Monno A, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 2009;175(2):547–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Team RC. R: a Language and environment for statistical computing. In: Vienna, Austria: R Foundation for Statistical Computing; 2013.

    Google Scholar 

  40. Murphy AA, Green WR, Bobbie D, dela Cruz ZC, Rock JA. Unsuspected endometriosis documented by scanning electron microscopy in visually normal peritoneum. Fertil Steril. 1986;46(3):522–524.

    Article  CAS  PubMed  Google Scholar 

  41. Nisolle M, Paindaveine B, Bourdon A, Berliere M, Casanas-Roux F, Donnez J. Histologic study of peritoneal endometriosis in infertile women. Fertil Steril. 1990;53(6):984–988.

    Article  CAS  PubMed  Google Scholar 

  42. Balasch J, Creus M, Fabregues F, et al. Visible and non-visible endometriosis at laparoscopy in fertile and infertile women and in patients with chronic pelvic pain: a prospective study. Hum Reprod. 1996;11(2):387–391.

    Article  CAS  PubMed  Google Scholar 

  43. Khan KN, Fujishita A, Kitajima M, Hiraki K, Nakashima M, Masuzaki H. Occult microscopic endometriosis: undetectable by laparoscopy in normal peritoneum. Hum Reprod. 2014;29(3):462–472.

    Article  PubMed  Google Scholar 

  44. Nezhat F, Allan CJ, Nezhat C, Martin DC. Nonvisualized endometriosis at laparoscopy. Int J Fertil. 1991;36(6):340–343.

    CAS  PubMed  Google Scholar 

  45. Badescu A, Roman H, Barsan I, et al. Patterns of bowel invisible microscopic endometriosis reveal the goal of surgery: removal of visual lesions only. J Minim Invasive Gynecol. 2018;25(3):522–527.e9.

    Article  PubMed  Google Scholar 

  46. Vercellini P, Somigliana E, Daguati R, Vigano P, Meroni F, Crosignani PG. Postoperative oral contraceptive exposure and risk of endometrioma recurrence. Am J Obstet Gynecol. 2008;198(5):504.e1–5.

    Article  CAS  Google Scholar 

  47. Abrao MS, Podgaec S, Dias JA Jr, et al. Deeply infiltrating endometriosis affecting the rectum and lymph nodes. Fertil Steril. 2006;86(3):543–547.

    Article  PubMed  Google Scholar 

  48. Noel JC, Chapron C, Fayt I, Anaf V. Lymph node involvement and lymphovascular invasion in deep infiltrating rectosigmoid endometriosis. Fertil Steril. 2008;89(5):1069–1072.

    Article  PubMed  Google Scholar 

  49. Desborough JP. The stress response to trauma and surgery. Br J Anaesth. 2000;85(1):109–117.

    Article  CAS  PubMed  Google Scholar 

  50. Reiche EM, Nunes SO, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004;5(10):617–625.

    Article  CAS  PubMed  Google Scholar 

  51. Guo SW, Zhang Q, Liu X. Social psychogenic stress promotes the development of endometriosis in mouse. Reprod Biomed Online. 2017;34(3):225–239.

    Article  PubMed  Google Scholar 

  52. Goldfarb Y, Ben-Eliyahu S. Surgery as a risk factor for breast cancer recurrence and metastasis: mediating mechanisms and clinical prophylactic approaches. Breast Dis. 2006;26:99–114.

    Article  PubMed  Google Scholar 

  53. Hiller JG, Perry NJ, Poulogiannis G, Riedel B, Sloan EK. Perioperative events influence cancer recurrence risk after surgery. Nat Rev Clin Oncol. 2018;15(4):205–218.

    Article  PubMed  Google Scholar 

  54. Neeman E, Zmora O, Ben-Eliyahu S. A new approach to reducing postsurgical cancer recurrence: perioperative targeting of catecholamines and prostaglandins. Clin Cancer Res. 2012;18(18):4895–4902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiang L, Nick AM, Sood AK. Fundamental principles of cancer biology: does it have relevance to the perioperative period? Curr Anesthesiol Rep. 2015;5(3):250–256.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Horowitz M, Neeman E, Sharon E, Ben-Eliyahu S. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat Rev Clin Oncol. 2015;12(4):213–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Buvanendran A, Kroin JS, Berger RA, et al. Upregulation of prostaglandin E2 and interleukins in the central nervous system and peripheral tissue during and after surgery in humans. Anesthesiology. 2006;104(3):403–410.

    Article  CAS  PubMed  Google Scholar 

  58. Traynor C, Hall GM. Endocrine and metabolic changes during surgery: anaesthetic implications. Br J Anaesth. 1981;53(2):153–160.

    Article  CAS  PubMed  Google Scholar 

  59. Attar E, Tokunaga H, Imir G, et al. Prostaglandin E2 via steroidogenic factor-1 coordinately regulates transcription of steroidogenic genes necessary for estrogen synthesis in endometriosis. J Clin Endocrinol Metab. 2009;94(2):623–631.

    Article  CAS  PubMed  Google Scholar 

  60. Wu MH, Lu CW, Chuang PC, Tsai SJ. Prostaglandin E2: the master of endometriosis? Exp Biol Med (Maywood). 2010;235(6):668–677.

    Article  CAS  Google Scholar 

  61. Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol. 2012;188(1):21–28.

    Article  CAS  PubMed  Google Scholar 

  62. Hadfield R, Mardon H, Barlow D, Kennedy S. Delay in the diagnosis of endometriosis: a survey of women from the USA and the UK. Hum Reprod. 1996;11(4):878–880.

    Article  CAS  PubMed  Google Scholar 

  63. Arruda MS, Petta CA, Abrao MS, Benetti-Pinto CL. Time elapsed from onset of symptoms to diagnosis of endometriosis in a cohort study of Brazilian women. Hum Reprod. 2003;18(4):756–759.

    Article  CAS  PubMed  Google Scholar 

  64. Hudelist G, Fritzer N, Thomas A, et al. Diagnostic delay for endometriosis in Austria and Germany: causes and possible consequences. Hum Reprod. 2012;27(12):3412–3416.

    Article  CAS  PubMed  Google Scholar 

  65. Haldar R, Ben-Eliyahu S. Reducing the risk of post-surgical cancer recurrence: a perioperative anti-inflammatory anti-stress approach. Future Oncol. 2018;14(11):1017–1021.

    Article  CAS  PubMed  Google Scholar 

  66. Shakhar G, Ben-Eliyahu S. Potential prophylactic measures against postoperative immunosuppression: could they reduce recurrence rates in oncological patients? Ann Surg Oncol. 2003;10(8):972–992.

    Article  PubMed  Google Scholar 

  67. Haldar R, Shaashua L, Lavon H, et al. Perioperative inhibition of beta-adrenergic and COX2 signaling in a clinical trial in breast cancer patients improves tumor Ki-67 expression, serum cytokine levels, and PBMCs transcriptome. Brain Behav Immun. 2018;73:294–309.

    Article  CAS  PubMed  Google Scholar 

  68. Abu-Ghefreh AA, Canatan H, Ezeamuzie CI. In vitro and in vivo anti-inflammatory effects of andrographolide. Int Immunopharmacol. 2009;9(3):313–318.

    Article  CAS  PubMed  Google Scholar 

  69. Hidalgo MA, Romero A, Figueroa J, et al. Andrographolide interferes with binding of nuclear factor-kappaB to DNA in HL-60-derived neutrophilic cells. Br J Pharmacol. 2005;144(5):680–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. **a YF, Ye BQ, Li YD, et al. Andrographolide attenuates inflammation by inhibition of NF-kappa B activation through covalent modification of reduced cysteine 62 of p50. J Immunol. 2004;173(6):4207–4217.

    Article  CAS  PubMed  Google Scholar 

  71. Amroyan E, Gabrielian E, Panossian A, Wikman G, Wagner H. Inhibitory effect of andrographolide from Andrographis paniculata on PAF-induced platelet aggregation. Phytomedicine. 1999;6(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  72. Lien LM, Su CC, Hsu WH, et al. Mechanisms of andrographolide-induced platelet apoptosis in human platelets: regulatory roles of the extrinsic apoptotic pathway. Phytother Res. 2013;27(11):1671–1677.

    Article  CAS  PubMed  Google Scholar 

  73. Ding D, Liu X, Duan J, Guo SW. Platelets are an unindicted culprit in the development of endometriosis: clinical and experimental evidence. Hum Reprod. 2015;30(4):812–832.

    Article  CAS  PubMed  Google Scholar 

  74. Varma A, Padh H, Shrivastava N. Andrographolide: a new plant-derived antineoplastic entity on horizon. Evid Based Complement Alternat Med. 2009;2011:815390.

    Google Scholar 

  75. Wang YJ, Wang JT, Fan QX, Geng JG. Andrographolide inhibits NF-kappaBeta activation and attenuates neointimal hyperplasia in arterial restenosis. Cell Res. 2007;17(11):933–941.

    Article  CAS  PubMed  Google Scholar 

  76. Ota H, Igarashi S, Sasaki M, Tanaka T. Distribution of cyclooxygenase-2 in eutopic and ectopic endometrium in endometriosis and adenomyosis. Hum Reprod. 2001;16(3):561–566.

    Article  CAS  PubMed  Google Scholar 

  77. Krikun G, Schatz F, Taylor H, Lockwood CJ. Endometriosis and tissue factor. Ann N Y Acad Sci. 2008;1127:101–105.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lin FL, Wu SJ, Lee SC, Ng LT. Antioxidant, antioedema and analgesic activities of Andrographis paniculata extracts and their active constituent andrographolide. Phytother Res. 2009;23(7):958–964.

    Article  CAS  PubMed  Google Scholar 

  79. Sulaiman MR, Zakaria ZA, Abdul Rahman A, et al. Antinociceptive and antiedematogenic activities of andrographolide isolated from andrographis paniculata in animal models. Biol Res Nurs. 2010;11(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  80. Du Y, Liu X, Guo SW. Platelets impair natural killer cell reactivity and function in endometriosis through multiple mechanisms. Hum Reprod. 2017;32(4):794–810.

    Article  CAS  PubMed  Google Scholar 

  81. Rico M, Baglioni M, Bondarenko M, et al. Metformin and propranolol combination prevents cancer progression and metastasis in different breast cancer models. Oncotarget. 2017;8(2):2874–2889.

    Article  PubMed  Google Scholar 

  82. Raimondi S, Botteri E, Munzone E, et al. Use of beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and breast cancer survival: systematic review and meta-analysis. Int J Cancer. 2016;139(1):212–219.

    Article  CAS  PubMed  Google Scholar 

  83. Watkins JL, Thaker PH, Nick AM, et al. Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer. 2015;121(19):3444–3451.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Q, Duan J, Olson M, Fazleabas A, Guo SW. Cellular changes consistent with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the progression of experimental endometriosis in baboons. Reprod Sci. 2016;23(10):1409–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang Q, Liu X, Guo SW. Progressive development of endometriosis and its hindrance by anti-platelet treatment in mice with induced endometriosis. Reprod Biomed Online. 2017;34(2):124–136.

    Article  CAS  PubMed  Google Scholar 

  86. Guo SW. Fibrogenesis resulting from cyclic bleeding: the Holy Grail of the natural history of ectopic endometrium. Hum Reprod. 2018;33(3):353–356.

    Article  CAS  PubMed  Google Scholar 

  87. Lee B, Du H, Taylor HS. Experimental murine endometriosis induces DNA methylation and altered gene expression in eutopic endometrium. Biol Reprod. 2009;80(1):79–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Naqvi H, Mamillapalli R, Krikun G, Taylor HS. Endometriosis located proximal to or remote from the uterus differentially affects uterine gene expression. Reprod Sci. 2016;23(2):186–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Wei Guo PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Q., Zheng, H., Liu, X. et al. Perioperative Intervention by β-Blockade and NF-κB Suppression Reduces the Recurrence Risk of Endometriosis in Mice Due to Incomplete Excision. Reprod. Sci. 26, 697–708 (2019). https://doi.org/10.1177/1933719119828066

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719119828066

Keywords

Navigation