Log in

Coordination of solvent molecules to VO(acac)2 complexes in solution studied by hyperfine sublevel correlation spectroscopy and pulsed electron nuclear double resonance

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Interactions and binding sites of the solvent molecules chloroform and ethanol to bis(acetylacetonate)oxovanadium(IV) (VO(acac)2) complexes in (frozen) solutions have been investigated by pulsed electron nuclear double resonance, sum peak electron spin echo envelope modulation and hyperfine sublevel correlation spectroscopy. The experimental proton hyperfine coupling data of coordinating solvent molecules have been interpreted using quantum chemical calculations (density functional theory). Experimental and computed hyperfine couplings indicate that ethanol coordinates to vanadium in the equatorial plane of VO(acac)2 and chloroform interacts via hydrogen bonding to oxygens of the acac ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Atherton, P. J. Gibbon and M. C. B. Shohoji, J. Chem. Soc. Dalton Trans., 2289 (1982).

  2. B. M. Sawant, A. L. W. Shroyer, G. R. Eaton and S. S. Eaton, Inorg. Chem. 21, 1093 (1982).

    Article  CAS  Google Scholar 

  3. C. M. Guzy, J. B. Raynor and M. C. R. Symons, J. Chem. Soc. A, 2791 (1969).

  4. S. S. Amin, K. Cryer, B. Zhang, S. K. Dutta, S. S. Eaton, O. P. Andreson, S. M. Miller, B. A. Reul, S. M. Brichard and D. C. Crans, Inorg. Chem. 39, 406 (2000).

    Article  CAS  Google Scholar 

  5. H. van Willigen, Chem. Phys. Lett. 65, 490 (1979).

    Article  Google Scholar 

  6. B. Kirste and H. van Willigen, J. Phys. Chem. 86, 2743 (1982).

    Article  CAS  Google Scholar 

  7. G. J. Baker and J. B. Raynor, J. Chem. Soc., Faraday Trans. I 84, 4267 (1988).

    Article  CAS  Google Scholar 

  8. N. D. Yordanov and M. Zdravkova, Polyhedron 12, 635 (1993).

    Article  CAS  Google Scholar 

  9. S. Van Doorslaer, Y. Segura and P. Cool, J. Phys. Chem. 108, 19404 (2004).

    Google Scholar 

  10. J. J. R. F. Da Silva and R. Wootton, J. Chem. Soc., Chem. Commun., 3175 (1969).

  11. M. R. Caira, J. M. Haigh and L. R. Nasimbeni, J. Inorg. Nucl. Chem. 34, 3175 (1972).

    Article  Google Scholar 

  12. M. R. Caira, J. M. Haigh and L. R. Nasımbeni, J. Inorg. Nucl. Chem. Lett. 8, 109 (1972).

    Article  CAS  Google Scholar 

  13. T. Hirao, Chem. Rev. 97, 2707 (1997).

    Article  CAS  Google Scholar 

  14. G. V. Bruno, J. K. Harrington and M. P. Eastman, J. Phys. Chem. 81, 1111 (1977).

    Article  CAS  Google Scholar 

  15. R. F. Campbell and J. H. Freed, J. Phys. Cem. 84, 2668 (1980).

    Article  CAS  Google Scholar 

  16. C. E. Heyliger, A. G. Tahiliani and J. H. McNeill, Science 227, 1474 (1985).

    Article  CAS  Google Scholar 

  17. P. Van der Voort, M. Baltes and E. F. Vansant, J. Phys. Chem. B. 103, 10102 (1999).

    Google Scholar 

  18. G. R. Hanson, Y. S. Sun and C. Orvig, Inorg. Chem. 35, 6507 (1996).

    Article  CAS  Google Scholar 

  19. Y. Sun, B. R. James, S. J. Rettig and C. Orvig, Inorg. Chem. 35, 1667 (1996).

    Article  CAS  Google Scholar 

  20. H. van Willigen, J. Magn. Reson. 39, 37 (1980).

    Google Scholar 

  21. A. Schweiger and G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance. Oxford University Press, Oxford (2001).

    Google Scholar 

  22. P. Höfer, A. Grupp, H. Nebenführ and M. Mehring, Chem. Phys. Lett. 132, 279 (1986).

    Article  Google Scholar 

  23. E. R. Davies, Phys. Lett. A 47A, 1 (1974).

    Article  Google Scholar 

  24. S. Stoll and A. Schweiger, J. Magn. Reson. 178, 42 (2006).

    Article  CAS  Google Scholar 

  25. E. J. Baerends, D. E. Ellis and P. Ros, Chem. Phys. 2, 41 (1973).

    Article  CAS  Google Scholar 

  26. G. te Velde and E. J. Baerends, J. Comput. Phys. 99, 84 (1992).

    Article  Google Scholar 

  27. F. C. Guerra, J. G. Sniders, G. te Velde and E. J. Baerends, Theor. Chem. Acc. 99, 391 (1998).

    Article  CAS  Google Scholar 

  28. S. H. Vosko, L. Wilk and M. Nusair, J. Phys. 58, 1200 (1980).

    CAS  Google Scholar 

  29. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  30. J. P. Perdew, Phys. Rev. B 33, 8822 (1986).

    Article  Google Scholar 

  31. S. Stoll and A. Schweiger, J. Magn. Reson. 177, 390 (2005).

    Article  Google Scholar 

  32. E. J. Reijerse and S. A. Dicanov, J. Chem. Phys. 95, 836 (1991).

    Article  CAS  Google Scholar 

  33. D. Mustafi and M. W. Makinen, Inorg. Chem. 27, 3360 (1988).

    Article  CAS  Google Scholar 

  34. A. Pöppl and L. Kevan, J. Phys. Chem. 100, 3387 (1996).

    Article  Google Scholar 

  35. A. Pöppl, M. Hartmann, W. Böhlmann and R. Böttcher, J. Phys. Chem. A 102, 3599 (1998).

    Article  Google Scholar 

  36. P. Höfer, J. Magn. Reson. 111, 77 (1994).

    Article  Google Scholar 

  37. R. P. Dodge, D. H. Templeton and A. Zalkin, J. Chem. Phys. 35, 55 (1961).

    Article  CAS  Google Scholar 

  38. J. C. Carl, S. L. Isley and S. C. Larsen, J. Phys. Chem. A 105, 4563, (2001).

    Article  CAS  Google Scholar 

  39. D. Mustafi and M. W. Makinen, Inorg. Chem. 27, 3360 (1988).

    Article  CAS  Google Scholar 

  40. E. Narr, H. Zimmermann, A. Godt, D. Goldfarb and G. Jeschke, Phys. Chem. Chem. Phys. 5, 3959 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Pöppl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarajan, V., Müller, B., Storcheva, O. et al. Coordination of solvent molecules to VO(acac)2 complexes in solution studied by hyperfine sublevel correlation spectroscopy and pulsed electron nuclear double resonance. Res Chem Intermed 33, 705–724 (2007). https://doi.org/10.1163/156856707782169408

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856707782169408

Keywords

Navigation