Log in

Towards understanding the behavior of physical systems using information theory

  • Regular Article
  • Information Theory of Dynamic Networks
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

One of the goals of complex network analysis is to identify the most influential nodes, i.e., the nodes that dictate the dynamics of other nodes. In the case of autonomous systems or transportation networks, highly connected hubs play a preeminent role in diffusing the flow of information and viruses; in contrast, in language evolution most linguistic norms come from the peripheral nodes who have only few contacts. Clearly a topological analysis of the interactions alone is not sufficient to identify the nodes that drive the state of the network. Here we show how information theory can be used to quantify how the dynamics of individual nodes propagate through a system. We interpret the state of a node as a storage of information about the state of other nodes, which is quantified in terms of Shannon information. This information is transferred through interactions and lost due to noise, and we calculate how far it can travel through a network. We apply this concept to a model of opinion formation in a complex social network to calculate the impact of each node by measuring how long its opinion is remembered by the network. Counter-intuitively we find that the dynamics of opinions are not determined by the hubs or peripheral nodes, but rather by nodes with an intermediate connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Albert, H. Jeong, A.-L. Barabasi, Nature 406, 378 (2000)

    Article  ADS  Google Scholar 

  2. A. Aleksiejuk, J.A. Holyst, D. Stauffer, Physica A 310, 260 (2002)

    Article  ADS  MATH  Google Scholar 

  3. S. Aral, D. Walker, Science, 337, 337 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  4. R.P. Bagozzi, U.M. Dholakia, J. Interactive Marketing 16, 2 (2002)

    Article  Google Scholar 

  5. A.-L. Barabasi, R. Albert, Emergence of scaling in random networks [eprint ar**v:cond-mat/9910332], October (1999)

  6. F. Bass, Management Sci. 15, 215 (1969)

    Article  MATH  Google Scholar 

  7. C.H. Bennett, Dissipation, information, computational complexity and the definition of organization, edited by David Pines, Emerging Syntheses in Science, (Reading, MA, 1987), p. 215

  8. C.H. Bennett, Stud. History Philosophy Mod. Phys. 34, 501 (2003)

    Article  Google Scholar 

  9. C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)

    Article  ADS  Google Scholar 

  10. D. Centola, M. Macy, Amer. J. Sociol. 113, 702 (2007)

    Article  Google Scholar 

  11. J.S. Coleman, E. Katz, H. Menzel, Medical innovation: A Diffusion Study, Vol. 46 (Bobbs-Merrill, 1966)

  12. T.M. Cover, J.A. Thomas, Elements of Information Theory, Vol. 6 (Wiley-Interscience, 1991)

  13. J.P. Crutchfield, C.J. Ellison, J.R. Mahoney, Phys. Rev. Lett. 103, 094101 (2009)

    Article  ADS  Google Scholar 

  14. J.P. Crutchfield, D.P. Feldman, Phys. Rev. E 55, R1239 (1997)

    Article  ADS  Google Scholar 

  15. J.P. Crutchfield, D.P. Feldman, Chaos 13, 25 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. U.M. Dholakia, R.P. Bagozzi, L.K. Pearo, Int. J. Res. Marketing 21, 241 (2004)

    Article  Google Scholar 

  17. T.L. Duncan, J.S. Semura, Found. Phys. 37, 1767 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. W. Ebeling, G. Nicolis, Chaos, Solitons Fractals 2, 635 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. P. Erdös, A. Rényi, Publicationes Mathematicae (Debrecen) 6, 290 (1959)

    MathSciNet  MATH  Google Scholar 

  20. Z. Fagyal, Social Networks 15 (2009)

  21. S. Galam, S. Moscovici, Eur. J. Social Psychol. 21, 49 (1991)

    Article  Google Scholar 

  22. F. Geier, J. Timmer, C. Fleck, BMC Systems Biol. 1, 11 (2007)

    Article  Google Scholar 

  23. J.-D.J. Han, N. Bertin, T. Hao, D.S. Goldberg, G.F. Berriz, L.V. Zhang, D. Dupuy, A.J.M. Walhout, M.E. Cusick, F.P. Roth, M. Vidal, Nature 430 (2004)

  24. E.T. Jaynes, The Phys. Rev. 106, 620 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. R. Landauer, IBM J. Res. Develop. 5, 183 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Landauer, Phys. Lett. A 217, 188 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. M. Leone, A. Vázquez, A. Vespignani, R. Zecchina, Eur. Phys. J. B 28, 191 (2002)

    Article  ADS  Google Scholar 

  28. J. Leskovec, L.A. Adamic, B.A. Huberman, ACM Trans. Web 1 (2007)

  29. Y.-Y. Liu, J.-J. Slotine, A.-L. Barabasi, Nature 473, 167 (2011)

    Article  ADS  Google Scholar 

  30. S. Lloyd, Nature 406, 1047 (2000)

    Article  ADS  Google Scholar 

  31. S. Lloyd, Programming the Universe: A Quantum Computer Scientist Takes On the Cosmos. Knopf, 2006

  32. B. Mashhoon, Found. Phys. 15, 497 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  33. B. Mashhoon, D. Theiss, Relativistic effects in the motion of the moon, in Gyros, Clocks, Interferometers: Testing Relativistic Gravity in Space, edited by Claus Lämmerzahl, C. Everitt, and Friedrich Hehl, Lecture Notes in Physics, Vol. 562 (Springer Berlin / Heidelberg, 2001), p. 310

  34. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  35. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. S.-C. Niu, Math. Probl. Eng. 8, 249 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. E.M. Rogers, Diff. Innovations (Free Press, 2003)

  38. B. Ryan, N.C Gross, Rural Sociology 8, 15 (1943)

    Google Scholar 

  39. V. Sood, T. Antal, S. Redner, Phys. Rev. E 77, 1 (2008)

    Article  MathSciNet  Google Scholar 

  40. T.W. Valente, R.L. Davis, The Annals of the American Academy (1999)

  41. K. Wiesner, Chaos 20, 037114 (2010)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick Quax.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quax, R., Apolloni, A. & Sloot, P.M.A. Towards understanding the behavior of physical systems using information theory. Eur. Phys. J. Spec. Top. 222, 1389–1401 (2013). https://doi.org/10.1140/epjst/e2013-01933-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01933-9

Keywords

Navigation