Log in

Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi2Te3

  • Regular Article
  • Semi-metals and the Topological Insulator
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We discuss the application of time-resolved ultrafast angle resolved photoelectron spectroscopy to the study of photoexcited topological insulators. Measurements performed on the prototype material Bi2Te3 clearly show that all the main processes involved in the ultrafast surface carrier dynamics of topological insulators can be clearly observed and quantitatively analyzed. The comparison with other experimental results shows that the relative position of surface and bulk conduction bands with respect to the system Fermi level play an essential role in the recombination processes following ultrafast optical excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HasanM.Z., KaneC.L., Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  2. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  3. H. Zhang, et al., Nat. Phys. 5, 438 (2009)

    Article  Google Scholar 

  4. D. Hsieh, et al., Nature 452, 970 (2008)

    Article  ADS  Google Scholar 

  5. Y.L. Chen, et al., Science 325, 178 (2009)

    Article  ADS  Google Scholar 

  6. F. Schmitt, et al., Science 321, 1649 (2008)

    Article  ADS  Google Scholar 

  7. T. Rohwer, et al., Nature 471, 490 (2011)

    Article  ADS  Google Scholar 

  8. J.C. Petersen, et al., Phys. Rev. Lett. 107, 177402 (2011)

    Article  ADS  Google Scholar 

  9. L. Perfetti, et al., Phys. Rev. Lett. 97, 067402 (2006)

    Article  ADS  Google Scholar 

  10. S. Hellmann, et al., Nature Comm. 3, 1069 (2012)

    Article  ADS  Google Scholar 

  11. Y. Ishida, et al., Scientific Reports 1, 64 (2011)

    Article  ADS  Google Scholar 

  12. C.L. Cortes, et al., Phys. Rev. Lett. 107, 097002 (2011)

    Article  ADS  Google Scholar 

  13. C.L. Smallwood, et al., Science 336, 6085 (2012)

    Article  Google Scholar 

  14. A. Damascelli, et al., Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  15. J. Sobota, et al., Phys. Rev. Lett. 108, 117403 (2012)

    Article  ADS  Google Scholar 

  16. Y. H. Wang, et al., Phys. Rev. Lett. 109, 127401 (2012)

    Article  ADS  Google Scholar 

  17. A. Crepaldi, et al., Phys. Rev. B 86, 205133 (2012)

    Article  ADS  Google Scholar 

  18. M. Hajlaoui, et al., Nano Lett. 12, 3532 (2012)

    Article  ADS  Google Scholar 

  19. M. Marsi, et al., J. Appl. Phys. 71, 2048 (1992)

    Article  ADS  Google Scholar 

  20. J. Faure, et al., Rev. Sci. Instrum. 83, 043109 (2012)

    Article  ADS  Google Scholar 

  21. E. Papalazarou, et al., Phys. Rev. Lett. 108, 256808 (2012)

    Article  ADS  Google Scholar 

  22. F. Rodolakis, et al., Phys. Rev. Lett. 102, 066805 (2009)

    Article  ADS  Google Scholar 

  23. M. Marsi, et al., Phys. Rev. B 47, 6455 (1993)

    Article  ADS  Google Scholar 

  24. O. Yazvey, et al., Phys. Rev. Lett. 105, 266806 (2010)

    Article  ADS  Google Scholar 

  25. N. Halas, J. Bokor, Phys. Rev. Lett. 62, 1679 (1989)

    Article  ADS  Google Scholar 

  26. J. Bokor, Science 246, 1130 (1989)

    Article  ADS  Google Scholar 

  27. M. Marsi, et al., J. Electron Spectrosc. Relat. Phenom. 94, 149 (1998)

    Article  Google Scholar 

  28. L. Toben, et al., Phys. Rev. Lett. 94, 067601 (2005)

    Article  ADS  Google Scholar 

  29. S.R. Park, et al., Phys. Rev. B 81, 041405 (2010)

    Article  ADS  Google Scholar 

  30. Z.-H. Pan, et al., Phys. Rev. Lett. 108, 187001 (2012)

    Article  ADS  Google Scholar 

  31. C. Jozwiak, et al., Rev. Sci. Instrum. 81, 053904 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajlaoui, M., Papalazarou, E., Mauchain, J. et al. Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi2Te3 . Eur. Phys. J. Spec. Top. 222, 1271–1275 (2013). https://doi.org/10.1140/epjst/e2013-01921-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01921-1

Keywords

Navigation