Log in

Vapor–liquid–solid growth of highly stoichiometric gallium phosphide nanowires on silicon: restoration of chemical balance, congruent sublimation and maximization of band-edge emission

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Growth of high quality III–V compound nanowires using simple chemical vapor deposition method with safe, inexpensive precursors is extremely important for a wide range of applications from solar cells, detectors, to light emitting devices. However, the most-often used deposition approach using compound powers suffers from incongruent sublimation of group III and V elements, leading to premature exhaust of group V elements and eventually to defective, non-stoichiometric nanowires with poor electronic and optical properties. In this paper, we report new results of our efforts in resolving these challenges using as an example the growth of GaP nanowires, an important widegap semiconductor. Our results reveal fascinating roles played by the elemental P source in addition to GaP powder such as restoration of chemical balance, inhabit of the incongruent sublimation of GaP, and the growth of highly stoichiometric GaP NWs with high optical quality and maximized band edge emission. The effects of growth parameters such as growth time, orientations of silicon substrate, growth temperature, and precursor combinations are studied and correlated to stoichiometry of NWs, and to the existence and degree of deep defect states and band edge emission. Our study sheds new light onto the important interplays among all these important factors. Our strategy is not only important for the growth of GaP nanowires on silicon but also for other III–V compounds as well using CVD and inexpensive compound powder sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.N. Quan, J.H. Kang, C.Z. Ning, Y. Peidong, Nanowires for photonics. Chem. Rev. 119(15), 9153–9169 (2019)

    Article  Google Scholar 

  2. C.Z. Ning, L. Dou, P.D. Yang, Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2(12), 1–14 (2017)

    Article  Google Scholar 

  3. E. Barrigón, M. Heurlin, Z. Bi, B. Monemar, L. Samuelson, Synthesis and applications of III–V nanowires. Chem. Rev. 119(15), 9170–9220 (2019)

    Article  Google Scholar 

  4. J. Wong-Leung, I. Yang, Z.Y. Li, S.K. Karuturi, L. Fu, H.H. Tan, J. Chennupati, Engineering III–V semiconductor nanowires for device applications. Adv. Mater. 32, 1904359 (2020)

    Article  Google Scholar 

  5. J.J. Tietjen, J.A. Amick, The preparation and properties of vapor-deposited epitaxial \(\text{ GaAs}_{1-\, x} \text{ P}_{{x}}\) using arsine and phosphine. J. Electrochem. Soc. 113, 724–728 (1966)

    Article  ADS  Google Scholar 

  6. N. Kornienko, D.D. Whitmore, Y. Yu, S.R. Leone, P. Yang, Solution phase synthesis of indium gallium phosphide alloy nanowires. ACS Nano 9(4), 3951–3960 (2015)

    Article  Google Scholar 

  7. S.E.H. Amiri, P. Ranga, D.Y. Li, F. Fan, C.Z. Ning, Growth of InGaP alloy nanowires with widely tunable bandgaps on silicon substrates. In: Lasers and Electro-Optics (CLEO), 2017 Conference on (pp. 1–2). IEEE (2017)

  8. M.G. Craford, R.D. Dupuis, M. Feng, F.A. Kish, J. Laskar, 50th anniversary of the light-emitting diode (LED): an ultimate lamp [scanning the issue]. Proc. IEEE 101(10), 2154–2157 (2013)

    Article  Google Scholar 

  9. M. Feifel, T. Rachow, J. Benick, J. Ohlmann, S. Janz, M. Hermle, F. Dimroth, D. Lackner, Gallium phosphide window layer for silicon solar cells. IEEE J. Photovoltaics 6(1), 384–390 (2016)

    Article  Google Scholar 

  10. A. Standing, S. Assali, L. Gao, M.A. Verheijen, D. Van Dam, Y. Cui, P.H. Notten, J.E. Haverkort, E.P. Bakkers, Efficient water reduction with gallium phosphide nanowires. Nat. Commun. 6, 7824 (2015)

    Article  ADS  Google Scholar 

  11. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, S.T. Lee, Synthesis and microstructure of gallium phosphide nanowires. J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenomena 19(4), 1115–1118 (2001)

    Article  ADS  Google Scholar 

  12. S. Assali, I. Zardo, S. Plissard, D. Kriegner, M.A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J.E.M. Haverkort, E.P.A.M. Bakkers, Direct band gap wurtzite gallium phosphide nanowires. Nano Lett. 13(4), 1559–1563 (2013)

    Article  ADS  Google Scholar 

  13. J.P. Boulanger, R.R. Lapierre, Patterned gold-assisted growth of GaP nanowires on Si. Semicond. Sci. Technol. 27(3), 035002 (2012)

    Article  ADS  Google Scholar 

  14. C. Liu, J. Sun, J. Tang, P. Yang, Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis. Nano Lett. 12(10), 5407–5411 (2012)

    Article  ADS  Google Scholar 

  15. Z. Gu, M.P. Paranthaman, Z. Pan, Vapor-phase synthesis of gallium phosphide nanowires. Cryst. Growth Des. 9(1), 525–527 (2008)

    Article  Google Scholar 

  16. H.W. Seo, S.Y. Bae, J. Park, H. Yang, S. Kim, Synthesis of gallium phosphide nanowires via sublimation method. Chem. Commun. 21, 2564–2565 (2002)

    Article  Google Scholar 

  17. G. Shen, Y. Bando, D. Golberg, InP-GaP Bi-coaxial nanowires and amorphous GaP nanotubes. J. Phys. Chem. C 111(9), 3665–3668 (2007)

    Article  Google Scholar 

  18. S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, C.J. Lee, Synthesis of high-purity GaP nanowires using a vapor deposition method. Chem. Phys. Lett. 367(5–6), 717–722 (2003)

    Article  ADS  Google Scholar 

  19. Q.L. Ye, R. Scheffler, J. Kumari, R. Leverenz, Growth and characterization of single crystalline InSb nanowires for thermoelectric applications (2007)

  20. X. Yang, G. Wang, P. Slattery, J.Z. Zhang, Y. Li, Ultrasmall single-crystal indium antimonide nanowires. Crystal Growth Des. 10(6), 2479–2482 (2010)

    Article  Google Scholar 

  21. S. Vaddiraju, M.K. Sunkara, A.H. Chin, C.Z. Ning, G.R. Dholakia, M. Meyyappan, Synthesis of group III antimonide nanowires. J. Phys. Chem. C 111(20), 7339–7347 (2007)

    Article  Google Scholar 

  22. S.E. Hashemi Amiri, L. Gan, F. Fan, P. Ranga, C.Z. Ning, High-quality indium phosphide films and nano-network grown using low-cost metal-catalyzed vapor–liquid–solid method for photovoltaic applications. Adv. Opt. Mater. 1800136 (2018)

  23. S.E.H. Amiri, S. Turkdogan, F. Fan, Y. Yu, P. Ranga, C.Z. Ning, Growth of stoichiometric InP nanowires/nanobelts by a facile vapor transport method. In: CLEO: Science and Innovations (pp. SM1R-6). Optical Society of America (2016)

  24. H. Wenzl, A. Dahlen, A. Fattah, S. Petersen, K. Mika, D. Henkel, Phase relations in GaAs crystal growth. J. Cryst. Growth 109(1–4), 191–204 (1991)

    Article  ADS  Google Scholar 

  25. C.T. Foxon, J.A. Harvey, B.A. Joyce, The evaporation of GaAs under equilibrium and non-equilibrium conditions using a modulated beam technique. J. Phys. Chem. Solids 34(10), 1693–1701 (1973)

    Article  ADS  Google Scholar 

  26. S.S. Matsuo, Properties of flash-evaporated gallium arsenide and gallium phosphide epitaxial films (1967)

  27. C.E.C. Wood, K. Singer, T. Ohashi, L.R. Dawson, A.J. Noreika, A pragmatic approach to adatom-induced surface reconstruction of III-V compounds. J. Appl. Phys. 54(5), 2732–2737 (1983)

    Article  ADS  Google Scholar 

  28. M.H. Sun et al., Photoluminescence properties of InAs nanowires grown on GaAs and Si substrates. Nanotechnology 21(33), 335705

  29. J. Greenberg, Thermodynamic basis of crystal growth: PTX phase equilibrium and non-stoichiometry, vol. 44 (Springer Science & Business Media, Singapore, 2013)

    Google Scholar 

  30. V.P. Zlomanov, A.J. Zavrazhnov, A.V. Davydov, Nonstoichiometry and P-T-x diagrams of binary systems. Intermetallics 11(11–12), 1287–1291 (2003)

    Article  Google Scholar 

  31. U. Philipose, G. Sapkota, Defect formation in InSb nanowires and its effect on stoichiometry and carrier transport. J. Nanopart. Res. 15(12), 2129 (2013)

    Article  ADS  Google Scholar 

  32. P. Ranga, Growth and Characterization of III-V Phosphide Nanowires (Arizona State University, Tempe, 2016)

    Google Scholar 

  33. S.P. Lewis, M.L. Cohen, Electronic structure of non-stoichiometric Ga-As compounds. Mater. Sci. Eng. B 22(2–3), 290–296 (1994)

    Article  Google Scholar 

  34. G.G. Libowitz, Nonstoichiometry in chemical compounds. Prog. Solid State Chem. 2, 216–264 (1965)

    Article  Google Scholar 

  35. J.A. Van Vechten, Simple theoretical estimates of the enthalpy of antistructure pair formation and virtual-enthalpies of isolated antisite defects in zinc-blende and wurtzite type semiconductors. J. Electrochem. Soc. 122(3), 423–429 (1975)

    Article  ADS  Google Scholar 

  36. M.G. Craford, W.O. Groves, Vapor phase epitaxial materials for LED applications. Proc. IEEE 61(7), 862–880 (1973)

    Article  Google Scholar 

  37. H.A. Tahini, A. Chroneos, S.T. Murphy, U. Schwingenschlögl, R.W. Grimes, Vacancies and defect levels in III-V semiconductors. J. Appl. Phys. 114(6), 063517 (2013)

    Article  ADS  Google Scholar 

  38. A. Fazzio, L.M. Brescansin, J.R. Leite, Electronic structure of neutral and negatively charged gallium vacancies in GaP. J. Phys. C Solid State Phys. 15(2), L1 (1982)

    Article  ADS  Google Scholar 

  39. L. Wang, J.A. Wolk, L. Hsu, E.E. Haller, J.W. Erickson, M. Cardona, T. Ruf, J.P. Silveira, F. Briones, Gallium self-diffusion in gallium phosphide. Appl. Phys. Lett. 70(14), 1831–1833 (1997)

    Article  ADS  Google Scholar 

  40. A.S. Jordan, R. Caruso, A.R. Von Neida, M.E. Weiner, Solid composition and gallium and phosphorus vacancy concentration isobars for GaP. J. Appl. Phys. 45(8), 3472–3476 (1974)

    Article  ADS  Google Scholar 

  41. A. Höglund, C.W.M. Castleton, S. Mirbt, Relative concentration and structure of native defects in GaP. Phys. Rev. B 72(19), 195213 (2005)

    Article  ADS  Google Scholar 

  42. R.M. Sheetz, I. Ponomareva, E. Richter, A.N. Andriotis, M. Menon, Defect-induced optical absorption in the visible range in ZnO nanowires. Phys. Rev. B 80(19), 195314 (2009)

    Article  ADS  Google Scholar 

  43. U. Philipose, T. Xu, S. Yang, P. Sun, H.E. Ruda, Y.Q. Wang, K.L. Kavanagh, Enhancement of band edge luminescence in ZnSe nanowires. J. Appl. Phys. 100(8), 084316 (2006)

    Article  ADS  Google Scholar 

  44. H. Mori, M. Ogasawara, M. Yamamoto, M. Tachikawa, New hydride vapor phase epitaxy for GaP growth on Si. Appl. Phys. Lett. 51(16), 1245–1247 (1987)

    Article  ADS  Google Scholar 

  45. K. Park, J.A. Lee, H.S. Im, C.S. Jung, H.S. Kim, J. Park, C.L. Lee, GaP-ZnS pseudobinary alloy nanowires. Nano Lett. 14(10), 5912–5919 (2014)

    Article  ADS  Google Scholar 

  46. F. Rinaldi, Basics of molecular beam epitaxy (MBE). Annual Report, 1–8 (2002)

  47. M.J. Mondry, E.J. Caine, H. Kroemer, A GaP decomposition source for producing a dimer phosphorus molecular beam free of gallium and tetramer phosphorus. J. Vacuum Sci. Technol. A Vacuum Surf. Films 3(2), 316–318 (1985)

    Article  ADS  Google Scholar 

  48. W.G. Schmidt, III-V compound semiconductor (001) surfaces. Appl. Phys. A 75(1), 89–99 (2002)

    Article  ADS  Google Scholar 

  49. H. Döscher, K. Möller, T. Hannappel, GaP (1 0 0) and InP (1 0 0) surface structures during preparation in a nitrogen ambient. J. Cryst. Growth 318(1), 372–378 (2011)

    Article  ADS  Google Scholar 

  50. H. Döscher et al., III–V on silicon: observation of gallium phosphide anti-phase disorder by low-energy electron microscopy. Surf. Sci. 605(15–16), L38–L41 (2011)

    Article  Google Scholar 

  51. D.C. Law, Y. Sun, R.F. Hicks, Reflectance difference spectroscopy of gallium phosphide (001) surfaces. J. Appl. Phys. 94(9), 6175–6180 (2003)

    Article  ADS  Google Scholar 

  52. C. Ratcliff et al., High temperature step-flow growth of gallium phosphide by molecular beam epitaxy and metalorganic chemical vapor deposition. Appl. Phys. Lett. 99(14), 141905 (2011)

    Article  ADS  Google Scholar 

  53. M.R. Leys et al., On the growth of gallium phosphide layers on gallium phosphide substrates by MOVPE. J. Electron. Mater. 18(1), 25–31 (1989)

    Article  ADS  Google Scholar 

  54. F.M. Davidson, R. Wiacek, B.A. Korgel, Supercritical fluid–liquid–solid synthesis of gallium phosphide nanowires. Chem. Mater. 17(2), 230–233 (2005)

    Article  Google Scholar 

  55. G. Job, F. Herrmann, Chemical potential–a quantity in search of recognition. Eur. J. Phys. 27(2), 353 (2006)

    Article  Google Scholar 

  56. G. Job, Allgemeines Grenzgesetz fur das Verhalten der Stoffe bei hoher Verdünnung Z̈. Physik. Chem. N. F. 87, 113–24 (1973)

    Google Scholar 

  57. J.B. Wang, Z.F. Li, P.P. Chen, W. Lu, T. Yao, Raman study of gap mode and lattice disorder effect in InN films prepared by plasma-assisted molecular beam epitaxy. Acta Mater. 55(1), 183–187 (2007)

    Article  ADS  Google Scholar 

  58. A.S. Nasibov, N.N. Mel’nik, I.V. Ponomarev, S.V. Romanko, S.B. Topchıı, A.N. Obraztsov, MYu. Bashtanov, A.A. Krasnovskıı, Quantum Electron. 28, 403 (1998)

    Article  ADS  Google Scholar 

  59. Y. He, N.A. El-Masry, J. Ramdani, S.M. Bedair, T.L. McCormick, R.J. Nemanich, E.R. Weber, Determination of excess phosphorus in low-temperature GaP grown by gas source molecular beam epitaxy. Appl. Phys. Lett. 65(13), 1671–1673 (1994)

    Article  ADS  Google Scholar 

  60. K. Kuriyama, Y. Miyamoto, M. Okada, Redshift of the longitudinal optical phonon in neutron irradiated GaP. J. Appl. Phys. 85(7), 3499–3502 (1999)

    Article  ADS  Google Scholar 

  61. I.R. Lewis, H. Edwards, Handbook of Raman spectroscopy: from the research laboratory to the process line (CRC Press, New York, 2001)

    Book  Google Scholar 

  62. A. Cantarero, Review on Raman scattering in semiconductor nanowires: I. Theory. J. Nanophotonics 7(1), 071598–071598 (2013)

    Article  ADS  Google Scholar 

  63. de la Chapelle, M. Lamy, H.X. Han, C.C. Tang, Raman scattering from GaP nanowires. Eur. Phys. J. B Condens. Matter Complex Syst. 46(4), 507–513 (2005)

    Article  Google Scholar 

  64. J. Wu, D. Zhang, Q. Lu, H.R. Gutierrez, P.C. Eklund, Polarized Raman scattering from single GaP nanowires. Phys. Rev. B 81(16), 165415 (2010)

    Article  ADS  Google Scholar 

  65. R. Gupta, Q. **ong, G.D. Mahan, P.C. Eklund, Surface optical phonons in gallium phosphide nanowires. Nano Lett. 3(12), 1745–1750 (2003)

    Article  ADS  Google Scholar 

  66. K.W. Adu, Q. **ong, H.R. Gutierrez, G. Chen, P.C. Eklund, Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl. Phys. A 85(3), 287 (2006)

    Article  ADS  Google Scholar 

  67. I. Zardo, S. Conesa-Boj, F. Peiro, J.R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, A.F. i Morral, Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: polarization dependence, selection rules, and strain effects. Phys. Rev. B 80(24), 245324 (2009)

    Article  ADS  Google Scholar 

  68. Q. **ong, J. Wang, P.C. Eklund, Coherent twinning phenomena: towards twinning superlattices in III-V semiconducting nanowires. Nano Lett. 6(12), 2736–2742 (2006)

    Article  ADS  Google Scholar 

  69. P. Caroff, K.A. Dick, J. Johansson, M.E. Messing, K. Deppert, L. Samuelson, Controlled polytypic and twin-plane superlattices in III-V nanowires. Nat. Nanotechnol. 4(1), 50 (2009)

    Article  ADS  Google Scholar 

  70. Z. Ikonic, G.P. Srivastava, J.C. Inkson, Optical properties of twinning superlattices in diamond-type and zinc-blende-type semiconductors. Phys. Rev. B 52(19), 14078 (1995)

    Article  ADS  Google Scholar 

  71. F. Fan, S. Turkdogan, Z. Liu, D. Shelhammer, C.Z. Ning, A monolithic white laser. Nat. Nanotechnol. 10(9), 796–803 (2015)

    Article  ADS  Google Scholar 

  72. Qilin Gu, B. Wang, Correlation between structural defects and optical properties of \(\text{ Cu}_{{2}}\)O nanowires grown by thermal oxidation. ar**v preprint ar**v:1012.5338 (2010)

  73. J. Lähnemann, U. Jahn, O. Brandt, T. Flissikowski, P. Dogan, H.T. Grahn, Luminescence associated with stacking faults in GaN. J. Phys. D Appl. Phys. 47(42), 423001 (2014)

  74. U. Philipose, S. Yang, T. Xu, H.E. Ruda, Origin of the red luminescence band in photoluminescence spectra of ZnSe nanowires. Appl. Phys. Lett. 90(6), 063103 (2007)

    Article  ADS  Google Scholar 

  75. M. Scheffler, J. Bernholc, N.O. Lipari, S.T. Pantelides, Electronic structure and identification of deep defects in GaP. Phys. Rev. B 29(6), 3269 (1984)

    Article  ADS  Google Scholar 

  76. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  77. C. Liu et al., Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis. Nano Lett. 12(10), 5407–5411 (2012)

    Article  ADS  Google Scholar 

  78. A. Standing, S. Assali, L. Gao, M.A. Verheijen, D. Van Dam, Y. Cui, E.P. Bakkers, Efficient water reduction with gallium phosphide nanowires. Nat. Commun. 6(1), 1–7 (2015)

    Article  Google Scholar 

  79. H. Emmer, C.T. Chen, R. Saive, Yu. Dennis Friedrich, A.A. Horie, A. Faraon, H.A. Atwater, Fabrication of single crystal gallium phosphide thin films on glass. Sci. Rep. 7(1), 1–6 (2017)

    Article  Google Scholar 

  80. P. Trofimov, A.P. Pushkarev, I.S. Sinev, V.V. Fedorov, S. Bruyere, A. Bolshakov, S.V. Makarov, Perovskite-gallium phosphide platform for reconfigurable visible-light nanophotonic chip. ACS Nano 14(7), 8126–8134 (2020)

    Article  Google Scholar 

  81. **ng Dai, Maria Tchernycheva, Cesare Soci, Compound semiconductor nanowire photodetectors, in Semiconductors and Semimetals, vol. 94, (Elsevier, Amsterdam, 2016), pp. 75–107

    Google Scholar 

  82. C. Soci et al., ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003–1009 (2007)

    Article  ADS  Google Scholar 

  83. P.E. Petersen, R.G. Schulze, Gallium phosphide photodetector having an as-grown surface and producing an output from radiation having energies of 2.2 eV to 3.8 eV. U.S. Patent No. 3,976,872. 24 (1976)

  84. K. Park et al., Synthesis of polytypic gallium phosphide and gallium arsenide nanowires and their application as photodetectors. ACS Omega 4(2), 3098–3104 (2019)

    Article  Google Scholar 

  85. G. Chen et al., High performance rigid and flexible visible-light photodetectors based on aligned X (In, Ga) P nanowire arrays. J. Mater. Chem. C 2(7), 1270–1277 (2014)

    Article  Google Scholar 

  86. P. Kuyanov, S.A. McNamee, R.R. LaPierre, GaAs quantum dots in a GaP nanowire photodetector. Nanotechnology 29(12), 124003 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Energy (DOE) (award number DE-AR0000625, with Massachusetts Institute of Technology (MIT) as the prime). The authors acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University, especially David Wright for his assistance with the CVD set-up and technical help and Dr. Sherry Chang for her help with HRTEM measurement of nanowires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cun-Zheng Ning.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1707 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, S.E.H., Turkdogan, S., Ranga, P. et al. Vapor–liquid–solid growth of highly stoichiometric gallium phosphide nanowires on silicon: restoration of chemical balance, congruent sublimation and maximization of band-edge emission. Eur. Phys. J. Spec. Top. 231, 723–734 (2022). https://doi.org/10.1140/epjs/s11734-021-00388-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00388-3

Navigation