Log in

Decoupled extended spherical solutions in Rastall gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we develop the spherically static solutions for isotropic source using an extended gravitational decoupling method within the framework of Rastall theory. The Rastall field equations are decomposed into two arrays by implementing geometric deformations on radial and temporal metric functions. The first set represents the seed source, while the second is influenced by an additional gravitational source term (anisotropic source). We use the isotropic Krori-Barua solutions to determine the isotropic sector, while imposing two mimic constraints on the novel gravitational source to close the second system. We investigate the effects of the Rastall parameter and the decoupling parameter on the physical attributes of the developed anisotropic solutions. Furthermore, we assess the viability of the formulated solutions through the graphical analysis of energy conditions. The stability of constructed solutions is also examined using the Herrera’s cracking approach, causality condition, and adiabatic index, respectively. Our findings indicate that both solutions are physically acceptable, with all physical aspects behaving appropriately for the considered choice of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability Statement

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116(3), 1009 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Measurements of \(\Lambda \) and \(\Omega \) from 42 high-redshift supernovae. Astrophys. J. 517(2), 565 (1999)

    Article  ADS  Google Scholar 

  3. S.P. Boughn, R.G. Crittenden, The large-scale bias of the hard X-ray background. Astrophys. J. 612(2), 647 (2004)

    Article  ADS  Google Scholar 

  4. D.J. Eisenstein et al., Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633(2), 560 (2005)

    Article  ADS  Google Scholar 

  5. Y. Kodama et al., Gamma-ray bursts in \(1.8< z< 5.6\) suggest that the time variation of the dark energy is small. Mon. Not. R. Astron. Soc. Lett. 391(1), L1–L4 (2008)

    Article  ADS  Google Scholar 

  6. J.A. Frieman et al., Dark energy and the accelerating universe. Annu. Rev. Astron. Astrophys. 46, 385–432 (2008)

    Article  ADS  Google Scholar 

  7. D. Wang et al., Observational constraints on a logarithmic scalar field dark energy model and black hole mass evolution in the Universe. Eur. Phys. J. C 83(7), 1–14 (2023)

    Article  ADS  Google Scholar 

  8. A. Malik et al., Charged stellar structure in \(f (R, \phi )\) gravity admitting Chaplygin equation of state. Int. J. Geom. Methods Mod. Phys. 21(4), 2450086–6 (2024)

    Article  MathSciNet  Google Scholar 

  9. T. Naz et al., Relativistic configurations of Tolman stellar spheres in \(f (G, T)\) gravity. Int. J. Geom. Methods Mod. Phys. 20(13), 2350222 (2023)

    Article  MathSciNet  Google Scholar 

  10. A. Rashid et al., A comprehensive study of Bardeen stars with conformal motion in \(f (G)\) gravity. Eur. Phys. J. C 83(11), 997 (2023)

    Article  ADS  Google Scholar 

  11. Z. Asghar et al., Comprehensive analysis of relativistic embedded class-I exponential compact spheres in \(f (R, \phi )\) gravity via Karmarkar condition. Commun. Theor. Phys. 75(10), 105401 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  12. S.A. Mardan et al., Spherically symmetric generating solutions in \(f(R)\) theory. Eur. Phys. J. Plus 138, 782 (2023)

    Article  Google Scholar 

  13. Z. Yousaf et al., Electromagnetic effects on anisotropic expansion-free fluid content. Commun. Theor. Phys. 75(10), 105202 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Malik, Charged Stellar structure with Krori–Barua potentials in \(f (R, \phi , X)\) Gravity admitting Chaplygin equation of state. Int. J. Geom. Methods Mod. Phys. 21, 2450157 (2024)

    Article  MathSciNet  Google Scholar 

  15. P. Bhar et al., Impact of f(Q) gravity on anisotropic compact star model and stability analysis. Chin. J. Phys. 88, 839 (2024)

    Article  MathSciNet  Google Scholar 

  16. T. Naz et al., Physical behavior of anisotropic quark stars in modified \(f (R, T)\) gravity. Int. J. Theor. Phys. 63(3), 78 (2024)

    Article  MathSciNet  Google Scholar 

  17. P. Bhar et al., Physical characteristics and maximum allowable mass of hybrid star in the context of \(f (Q)\) gravity. Eur. Phys. J. C 83(7), 1–19 (2023)

    Article  Google Scholar 

  18. T. Naz et al., Finch–Skea Stellar structures obeying Karmarkar condition in modified \(f (G)\) gravity. Chin. J. Phys. 89, 871–883 (2024)

    Article  MathSciNet  Google Scholar 

  19. A. Malik, Impact of Tolman–Kuchowicz potentials on Gauss–Bonnet gravity and isotropic Stellar structures. Chin. J. Phys. 90, 463–473 (2024)

    Article  MathSciNet  Google Scholar 

  20. Z. Asghar et al., Study of embedded class-I fluid spheres in \(f (R, T)\) gravity with Karmarkar condition. Chin. J. Phys. 83, 427–437 (2023)

    Article  MathSciNet  Google Scholar 

  21. A. Malik, M. Farasat Shamir, Exact perfect fluid interior solutions and slowly rotating relativistic stars. Eur. Phys. J. Plus 139(5), 448 (2024)

    Article  Google Scholar 

  22. Z. Yousaf et al., Bouncing cosmology with 4D-EGB gravity. Int. J. Theor. Phys. 62(7), 155 (2023)

    Article  MathSciNet  Google Scholar 

  23. A. Malik et al., Singularity-free anisotropic compact star in \(f (R, \phi )\) gravity via Karmarkar condition. Int. J. Geom. Methods Mod. Phys. 21(1), 2450018–8 (2024)

    Article  MathSciNet  Google Scholar 

  24. T. Naz et al., Evolving embedded traversable wormholes in \(f (R, G)\) gravity: a comparative study. Phys. Dark Univ. 42, 101301 (2023)

    Article  Google Scholar 

  25. M.F. Shamir et al., Relativistic Krori–Barua compact stars in \(f(R, T)\) gravity. Fortschr. Phys. 70(12), 2200134 (2022)

    Article  MathSciNet  Google Scholar 

  26. A. Malik et al., Charged anisotropic compact stars in Ricci-inverse gravity. Eur. Phys. J. Plus 139(1), 67 (2024)

    Article  Google Scholar 

  27. M.F. Shamir et al., Dark universe with Noether symmetry. Theor. Math. Phys. 205(3), 1692–1705 (2020)

    Article  MathSciNet  Google Scholar 

  28. M.F. Shamir et al., Wormhole solutions in modified \(f (R, \phi , X)\) gravity. Int. J. Mod. Phys. A 36(04), 2150021 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  29. I. Fayyaz et al., Fate of charged wormhole structures utilizing Karmarkar approach. New Astron. 112, 102255 (2024)

    Article  Google Scholar 

  30. M.F. Shamir et al., Noncommutative wormhole solutions in modified \(f (R)\) theory of gravity. Chin. J. Phys. 73, 634–648 (2021)

    Article  MathSciNet  Google Scholar 

  31. P. Rastall, Generalization of the Einstein theory. Phys. Rev. D 6(12), 3357 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  32. C.E.M. Batista et al., Rastall cosmology and the \(\Lambda \)CDM model. Phys. Rev. D 85(8), 084008 (2012)

    Article  ADS  Google Scholar 

  33. T.R.P. Caramês et al., The Brans–Dicke–Rastall theory. Eur. Phys. J. C 74(11), 3145 (2014)

    Article  ADS  Google Scholar 

  34. M. Visser, Rastall gravity is equivalent to Einstein gravity. Phys. Lett. B 782, 83–86 (2018)

    Article  ADS  Google Scholar 

  35. G. Abbas, M.R. Shahzad, A new model of quintessence compact stars in the Rastall theory of gravity. Eur. Phys. J. A 54(12), 211 (2018)

    Article  ADS  Google Scholar 

  36. H. Moradpour et al., Black hole solutions and Euler equation in Rastall and generalized Rastall theories of gravity. Mod. Phys. Lett. A 34(37), 1950304 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. G. Abbas, M.R. Shahzad, Comparative analysis of Einstein gravity and Rastall gravity for the compact objects. Chin. J. Phys. 63, 1–12 (2020)

    Article  MathSciNet  Google Scholar 

  38. S. Ghosh et al., Probing cosmology beyond \(\Lambda \)CDM using SKA. J. Astrophys. Astron. 44(1), 22 (2023)

    Article  ADS  Google Scholar 

  39. F. Javed et al., A comparative study of new generic wormhole models with stability analysis via thin-shell. Phys. Scr. 97(12), 125010 (2022)

    Article  ADS  Google Scholar 

  40. D.A.T. Vanzella, Gravity theories with local energy-momentum exchange: a closer look at Rastall-like gravity. Class. Quantum Gravity 40(16), 165011 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Malik, Comprehensive study of cylindrical Levi–Civita and cosmic string solutions in Rastall theory of gravity. Chin. J. Phys. 84, 357–370 (2023)

    Article  MathSciNet  Google Scholar 

  42. A. Malik et al., Embedding procedure and wormhole solutions in Rastall gravity utilizing the class I approach. Int. J. Geom. Methods Mod. Phys. 20(09), 2350145 (2023)

    Article  MathSciNet  Google Scholar 

  43. A. Malik et al., Stability analysis of anisotropic stellar structures in Rastall theory of gravity utilizing cracking technique. Chin. J. Phys. 89, 613–627 (2024)

    Article  MathSciNet  Google Scholar 

  44. H.O. Silva et al., Compact objects in Horndeski gravity. Int. J. Modern Phys. D 25(09), 1641006 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  45. P.H.R.S. Moraes et al., Analytical general solutions for static wormholes in f (R, T) gravity. J. Cosmol. Astropart. Phys. 2017(07), 029 (2017)

    Article  MathSciNet  Google Scholar 

  46. S.K. Maurya et al., The effect of gravitational decoupling on constraining the mass and radius for the secondary component of GW190814 and other self-bound strange stars in \(f (Q)\) gravity theory. Astrophys. J. Suppl. Ser. 269(2), 35 (2023)

    Article  ADS  Google Scholar 

  47. A. Al Busaidi et al., Complexity-free Vaidya–Tikekar model describing self-bound compact objects by gravitational decoupling. Phys. Scr. 98(7), 075302 (2023)

    Article  ADS  Google Scholar 

  48. T.T. Smitha et al., Anisotropic star by gravitational decoupling: a vanishing complexity approach. Results Phys. 49, 106502 (2023)

    Article  Google Scholar 

  49. S.K. Maurya et al., Complexity-free solution generated by gravitational decoupling for anisotropic self-gravitating star in symmetric teleparallel f (Q)-gravity theory. Eur. Phys. J. C 83(4), 1–18 (2023)

    Article  Google Scholar 

  50. M.A. Habsi et al., Self-bound embedding Class I anisotropic stars by gravitational decoupling within vanishing complexity factor formalism. Eur. Phys. J. C 83(4), 286 (2023)

    Article  ADS  Google Scholar 

  51. S.K. Maurya et al., A simple protocol for anisotropic generalization of Finch–Skea model by gravitational decoupling satisfying vanishing complexity factor condition. Eur. Phys. J. C 82(12), 1–15 (2022)

    Article  Google Scholar 

  52. S.K. Maurya et al., Anisotropic strange star model beyond standard maximum mass limit by gravitational decoupling in f(Q) f(Q) gravity. Fortschr. Phys. 70(11), 2200061 (2022)

    Article  MathSciNet  Google Scholar 

  53. A. Malik et al., Investigation of charged stellar structures in \(f (R, \phi )\) gravity using Reissner–Nordstrom geometry. Int. J. Geom. Methods Mod. Phys. 21(5), 2450099–22 (2024)

    Article  MathSciNet  Google Scholar 

  54. S.K. Maurya et al., Minimally deformed anisotropic stars in dark matter halos under EGB-action. Eur. Phys. J. C 83(10), 1–16 (2023)

    Article  Google Scholar 

  55. S.K. Maurya et al., Exploring physical properties of minimally deformed strange star model and constraints on maximum mass limit in \(f (Q)\) gravity. J. Cosmol. Astropart. Phys. 2022(10), 003 (2022)

    Article  MathSciNet  Google Scholar 

  56. A. Malik et al., Relativistic Tolman Stellar spheres in \(f (R, \phi )\) theory of gravity. Int. J. Geom. Methods Mod. Phys. 21(3), 2450055–20 (2024)

    Article  MathSciNet  Google Scholar 

  57. M.K. Jasim et al., Minimally deformed anisotropic solution generated by vanishing complexity factor condition in \(f (Q)\)-gravity theory. Phys. Scr. 98(4), 045305 (2023)

    Article  ADS  Google Scholar 

  58. S.K. Maurya et al., Observational constraints on maximum mass limit and physical properties of anisotropic strange star models by gravitational decoupling in Einstein–Gauss–Bonnet gravity. Mon. Not. R. Astron. Soc. 519(3), 4303–4324 (2023)

    Article  ADS  Google Scholar 

  59. A. Malik et al., A study of charged stellar structure in modified \(f (R, \phi , X)\) gravity. Int. J. Geom. Methods Mod. Phys. 19(11), 2250180 (2022)

    Article  MathSciNet  Google Scholar 

  60. S.V. Lohakare et al., Influence of three parameters on maximum mass and stability of strange star under linear \(f (Q)\) action. Mon. Not. R. Astron. Soc. 526(3), 3796–3814 (2023)

    Article  ADS  Google Scholar 

  61. S.K. Maurya et al., Study of anisotropic strange stars in \(f (R, T)\) gravity: an embedding approach under the simplest linear functional of the matter-geometry coupling. Phys. Rev. D 100(4), 044014 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  62. P. Rej, P. Bhar, Charged strange star in \(f (R, T)\) gravity with linear equation of state. Astrophys. Space Sci. 366(4), 35 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  63. M.Z. Gul et al., Viable and stable compact stars in \(f (Q)\) theory. Eur. Phys. J. C 84(1), 8 (2024)

    Article  ADS  Google Scholar 

  64. M. Ruderman, Pulsars: structure and dynamics. Ann. Rev. Astron. Astrophys. 10(1), 427–476 (1972)

    Article  ADS  Google Scholar 

  65. V. Canuto, S.M. Chitre, Solidification of neutron matter. Phys. Rev. Lett. 30(20), 999 (1973)

    Article  ADS  Google Scholar 

  66. V. Canuto, Equation of state at ultrahigh densities. Ann. Rev. Astron. Astrophys. 12(1), 167–214 (1974)

    Article  ADS  Google Scholar 

  67. R.L. Bowers, E.P.T. Liang, Anisotropic spheres in general relativity. Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  68. A. Malik et al., A study of anisotropic compact stars in \(f (R, \phi , X)\) theory of gravity. Int. J. Geom. Methods Mod. Phys. 19(02), 2250028 (2022)

    Article  MathSciNet  Google Scholar 

  69. Z. Yousaf et al., Stability of anisotropy pressure in self-gravitational systems in \(f (G)\) gravity. Axioms 12(3), 257 (2023)

    Article  Google Scholar 

  70. S. Khan et al., Structure of anisotropic fuzzy dark matter black holes. Eur. Phys. J. C 84(6), 572 (2024)

    Article  ADS  Google Scholar 

  71. J. Ovalle, Searching exact solutions for compact stars in braneworld: a conjecture. Mod. Phys. Lett. A 23(38), 3247–3263 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  72. J. Ovalle, F. Linares, Tolman IV solution in the Randall–Sundrum braneworld. Phys. Rev. D 88(10), 104026 (2013)

    Article  ADS  Google Scholar 

  73. J. Ovalle et al., Anisotropic solutions by gravitational decoupling. Eur. Phys. J. C 78, 1–11 (2018)

    Google Scholar 

  74. L. Gabbanelli et al., Gravitational decoupled anisotropies in compact stars. Eur. Phys. J. C 78(5), 370 (2018)

    Article  ADS  Google Scholar 

  75. M. Sharif, S. Sadiq, Gravitational decoupled charged anisotropic spherical solutions. Eur. Phys. J. C 78, 1–10 (2018)

    Google Scholar 

  76. E. Morales, F. Tello-Ortiz, Charged anisotropic compact objects by gravitational decoupling. Eur. Phys. J. C 78, 1–17 (2018)

    Google Scholar 

  77. E. Contreras, P. Bargueño, Minimal geometric deformation decoupling in 2 + 1 dimensional space–times. Eur. Phys. J. C 78(7), 558 (2018)

    Article  ADS  Google Scholar 

  78. M. Sharif, Q. Ama-Tul-Mughani, Study of (1 + 2)-dimensional charged string cloud with minimal geometric deformation. Int. J. Geom. Methods Mod. Phys. 16(12), 1950187 (2019)

    Article  MathSciNet  Google Scholar 

  79. S.K. Maurya, F. Tello-Ortiz, Decoupling gravitational sources by MGD approach in Rastall gravity. Phys. Dark Univ. 29, 100577 (2020)

    Article  Google Scholar 

  80. S. Sadiq et al., Gravitationally decoupled charged anisotropic solutions in Rastall gravity. Front. Astron. Space Sci. 10, 1320081 (2024)

    Article  ADS  Google Scholar 

  81. M. Sharif, M. Sallah, Decoupled charged anisotropic spherical solutions in Rastall gravity. New Astron. 109, 102198 (2024)

    Article  Google Scholar 

  82. R. Casadio et al., The minimal geometric deformation approach extended. Class. Quantum Gravity 32(21), 215020 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  83. J. Ovalle, Decoupling gravitational sources in general relativity: the extended case. Phys. Lett. B 788, 213–218 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  84. E. Contreras, P. Bargueño, Extended gravitational decoupling in 2 + 1 dimensional space–times. Class. Quantum Gravity 36(21), 215009 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  85. M. Sharif, Q. Ama-Tul-Mughani, Extended gravitational decoupled charged anisotropic solutions. Chin. J. Phys. 65, 207–220 (2020)

    Article  MathSciNet  Google Scholar 

  86. M. Sharif, Q. Ama-Tul-Mughani, Anisotropic spherical solutions through extended gravitational decoupling approach. Ann. Phys. 415, 168122 (2020)

    Article  MathSciNet  Google Scholar 

  87. M. Sharif, S. Saba, Extended gravitational decoupling approach in \(f (G)\) gravity. Int. J. Mod. Phys. D 29(06), 2050041 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  88. M. Sharif, A. Majid, Extended gravitational decoupled solutions in self-interacting Brans–Dicke theory. Phys. Dark Univ. 30, 100610 (2020)

    Article  Google Scholar 

  89. M. Sharif, S. Naz, Anisotropic extensions of Tolman IV through decoupling in energy-momentum squared gravity. Mod. Phys. Lett. A 39(03), 2350196 (2024)

    Article  ADS  MathSciNet  Google Scholar 

  90. K. Hassan, M. Sharif, Decoupled anisotropic solutions using Karmarkar condition in \(f (G, T)\) gravity. Universe 9(4), 165 (2023)

    Article  ADS  Google Scholar 

  91. K.D. Krori, J. Barua, A singularity-free solution for a charged fluid sphere in general relativity. J. Phys. A Math. Gen. 8(4), 508 (1975)

    Article  ADS  Google Scholar 

  92. M. Sharif, M. Aslam, Compact objects by gravitational decoupling in \(f (R)\) gravity. Eur. Phys. J. C 81(7), 1–17 (2021)

    Article  ADS  Google Scholar 

  93. G. Abbas, M.R. Shahzad, Models of anisotropic compact stars in the Rastall theory of gravity. Astrophys. Space Sci. 364(3), 50 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  94. M. Sharif, S. Saba, Gravitational decoupled anisotropic solutions in \(f (G)\) gravity. Eur. Phys. J. C 78, 1–12 (2018)

    Google Scholar 

  95. K. Schwarzschild, On the gravitational field of a mass point according to Einstein’s theory. Gen. Relativ. Gravit. 35(5), 951–959 (2003)

    Article  MathSciNet  Google Scholar 

  96. R.B. Israel, Convexity in the Theory of Lattice Gases, vol. 62 (Princeton University Press, Princeton, 2015)

    Book  Google Scholar 

  97. A.P. Reynolds et al., A new mass estimate for Hercules X-1. Mon. Not. R. Astron. Soc. 288(1), 43–52 (1997)

    Article  ADS  Google Scholar 

  98. H. Abreu et al., Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects. Class. Quantum Gravity 24(18), 4631 (2007)

    Article  ADS  Google Scholar 

  99. L. Herrera, Cracking of self-gravitating compact objects. Phys. Lett. A 165(3), 206–210 (1992)

    Article  ADS  Google Scholar 

  100. H. Heintzmann, W. Hillebrandt, Neutron stars with an anisotropic equation of state-mass, redshift and stability. Astron. Astrophys. 38, 51–55 (1975)

    ADS  Google Scholar 

Download references

Acknowledgements

Adnan Malik acknowledges the Grant No. YS304023912 to support his Postdoctoral Fellowship at Zhejiang Normal University, China.

Author information

Authors and Affiliations

Authors

Contributions

We declare that all the authors have same contributions to this paper.

Corresponding author

Correspondence to Adnan Malik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M., Malik, A. Decoupled extended spherical solutions in Rastall gravity. Eur. Phys. J. Plus 139, 580 (2024). https://doi.org/10.1140/epjp/s13360-024-05385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05385-8

Navigation