Log in

Levenberg–Marquardt neural network for entropy optimization on Casson hybrid nanofluid flow with nonlinear thermal radiation: a comparative study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate entropy optimization in the magneto-hydrodynamic and electro-magneto-hydrodynamic flow of a Casson hybrid nanofluid over a rotating disk with nonlinear thermal radiation. The governing dimensional partial differential equations were reduced to ordinary differential equations by using appropriate transforms and solved numerically. The effects of several physical factors on the velocity, temperature, entropy generation, Bejan number, Nusselt number, and skin friction coefficient in comparison to the nanofluid and hybrid nanofluid scenarios over a rotating disk are explored both tabularly and graphically. The constructed artificial neural network is the most appropriate for predicting the skin friction coefficient and Nusselt number over a rotating disk. As the magnetic field strength increased, the velocity profiles decreased in the nanofluid and hybrid nanofluid scenarios. When the thermal radiation increased, the amount of entropy generated for the nanofluids and hybrid nanofluids also increased. We built the artificial neural networking model using 51 sample values of the skin friction coefficient and Nusselt number as outputs. This section provides various dimensionless parameters, which are all inputs. We utilized 70% of the data for training, and 15% for validation and testing. The Levenberg–Marquardt algorithm and back-propagation were used to train the neural network. The best validation performance for skin friction and the Nusselt number for the Casson hybrid nanofluid across a rotating disk are 6652e-07 at epoch 138 and 2.7094e-05 at epoch 7. Additionally, the training, validation, testing, and performance of the ANN model were closer to unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

Data availability

No data associated in the manuscript.

Abbreviations

\((u^{ * } ,v^{ * } ,w^{ * } )\) :

Velocity components

\((r^{ * } ,\phi^{ * } ,z^{ * } )\) :

Directions (m s−1)

Be:

Bejan number

\(\mu\) :

Dynamic viscosity \(\left( {{\text{kg}}\;{\text{m}}^{ - 1} \;{\text{s}}^{ - 1} } \right)\)

\(\upsilon\) :

Kinematic viscosity \(({\text{m}}^{2} \;{\text{s}}^{ - 1} )\)

\(\sigma\) :

Electric conductivity \(({\text{S}}\;{\text{m}}^{ - 1} )\)

\(k\) :

Thermal conductivity \(({\text{W}}\;{\text{m}}^{ - 1} \;{\text{K}}^{ - 1} )\)

\(\phi_{1} ,\;\phi_{2}\) :

Nanoparticles volume fraction

\(\beta_{f}\) :

Thermal expansion \({\text{K}}^{ - 1}\)

\(\rho\) :

Density \(\left( {{\text{kg}}\;{\text{m}}^{ - 3} } \right)\)

\(c_{p}\) :

Heat capacity \(({\text{J}}\;{\text{kg}}^{ - 1} \;{\text{K}}^{ - 1} )\)

\(C_{f} \;{\text{Re}}^{1/2}\) :

Skin friction coefficient

\(\alpha_{f}\) :

Thermal diffusivity of the base fluid, (m2 s−1)

\(T_{w}\) :

Surface temperature, \({\text{K}}\)

\(T\) :

Temperature of the fluid, \({\text{K}}\)

\(\sigma^{*}\) :

Stefan Boltzmann constant

\(\beta\) :

Casson fluid parameter

\(T_{f}\) :

Temperature of heated fluid, \({\text{K}}\)

\(T_{\infty }\) :

Ambient fluid temperature, \({\text{K}}\)

\(F^{\prime}\left( \eta \right)\) :

Radial velocity

\(\Omega\) :

Constant angular velocity

\(k^{*}\) :

Mean absorption coefficient

\(p\) :

Pressure

\(h_{f}\) :

Heat transfer coefficient, \({\text{W}}\;{\text{m}}^{ - 2} \;{\text{k}}\)

\({\text{Ec}} = \frac{{r^{2} \Omega^{2} }}{{\left( {C_{p} } \right)_{f} \left( {T_{f} - T_{\infty } } \right)}}\) :

Eckert number

\({\text{Br}} = \frac{{\mu_{f} \Omega^{2} R^{2} }}{{k_{f} \Delta T}}\) :

Rotational Brinkman number

\(\theta_{f} = \frac{{T_{f} }}{{T_{\infty } }}\) :

Temperature ratio parameter

\({\text{Gr}} = \frac{{g\beta_{f} T_{\infty } (T_{f} - 1)r^{3} }}{{\upsilon_{f}^{2} }}\) :

Thermal Grashof number

\(K = \frac{{\upsilon_{f} }}{{\Omega K^{ * } }}\) :

Porosity parameter

\(\delta = \frac{a}{\Omega }\) :

Stretching-strength parameter

\({\text{Re}} = r\left( {\frac{r\Omega }{{\upsilon_{f} }}} \right)\) :

Rotational Reynolds number

\(F^{*} = \left( {\frac{{C_{d} }}{{rK^{{*^{1/2} }} }}} \right)\) :

Non-uniform inertia coefficient

\({\text{Fr}} = \frac{{C_{d} }}{{\sqrt {K^{ * } } }}\) :

Forchheimer number

\(C_{d}\) :

Drag coefficient

\(\Delta T = T_{f} - T_{\infty }\) :

Temperature difference

\(\alpha = \frac{\Delta T}{{T_{\infty } }}\) :

Temperature ratio parameter

\(D = \frac{r}{R}\) :

Dimensionless radial coordinate

\({\text{Bi}} = \frac{{h_{f} }}{{k_{f} }}\sqrt {\frac{{\upsilon_{f} }}{2\Omega }}\) :

Biot number

\(E_{1} = \frac{E}{B\Omega r}\) :

Electric field parameter

\(M = \frac{{\sigma_{f} B_{0}^{2} }}{{\Omega \rho_{f} }}\) :

Magnetic interaction parameter

\(N_{G} = \frac{{S^{\prime\prime\prime}_{gen} }}{{2\left( {k_{f} \Delta T\Omega /T_{w} \upsilon_{f} } \right)}}\) :

Dimensionless entropy generation rate

\({\text{NuRe}}^{ - 1/2}\) :

Nusselt number

\(R_{d} = \frac{{4\sigma^{*} T^{3} }}{{k^{*} k_{f} }}\) :

Radiation parameter

\(Q = \frac{{Q_{0} }}{{\Omega \left( {\rho C_{p} } \right)_{f} }}\) :

Heat absorption/generation coefficient

\(S = \frac{W}{{\sqrt {2\Omega \upsilon_{f} } }}\) :

Suction parameter

\({\text{Pr}} = \frac{{\upsilon_{f} }}{{\alpha_{f} }}\) :

Prandtl number

\({\text{Re}} = \frac{{\Omega r^{2} }}{{\upsilon_{f} }}\) :

Rotational Reynolds number

\(\alpha_{f}\) :

Thermal diffusivity of the base fluid, \({\text{m}}^{2} \;{\text{s}}^{ - 1}\)

\(f\) :

Base fluid

\(nf\) :

Nanofluid

\(hnf\) :

Hybrid nanofluid

\(s_{1}\) :

First solid nanoparticle

\(s_{2}\) :

Second solid nanoparticle

EMHD:

Electro-magneto-hydrodynamic

ANN:

Artificial neural networks

NLTR:

Non linear thermal radiation

BP:

Backpropagation

PDE:

Partial differential equations

ODE:

Ordinary differential equations

LMFFBOA:

Levenberg–Marquardt feedforward backpropagation optimization approach

LMA:

Levenberg–Marquardt algorithm

References

  1. S.U.S. Choi, Am. Soc. Mech. Eng. Fluids Eng. Div 231, 99 (1995)

    Google Scholar 

  2. S.I. Abdelsalam, A. Magesh, P. Tamizharasi, A.Z. Zaher, Int. J. Numer. Methods Heat Fluid Flow 34, 408 (2024)

    Article  Google Scholar 

  3. M. Tayyab, I. Siddique, F. Jarad, M.K. Ashraf, B. Ali, South African J. Chem. Eng. 40, 48 (2022)

    Article  Google Scholar 

  4. J. Buongiorno, J. Heat Transfer 128, 240 (2006)

    Article  Google Scholar 

  5. T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, Colloids Surfaces A Physicochem. Eng. Asp. 539, 335 (2018)

    Article  Google Scholar 

  6. M. Nayak, A. Hakeem, M. K.-C. methods and Ganga, B, and 2020, Comput. Methods Programs Biomed 186, 105131 (2020)

  7. N. Muhammad, S. Nadeem, A. Issakhov, Phys. A Stat. Mech. Its Appl. 537, 122738 (2020)

    Article  Google Scholar 

  8. M. Naveed, M. Awais, Z. Abbas, M. Sajid, Ric. Di Mat. 73(2), 755–772 (2024)

  9. V. B. Awati, A. Goravar, M. K. N., Math. Comput. Simul. 215, 158–183 (2024)

  10. S.I. Abdelsalam, A.Z. Zaher, Appl. Math. Mech. 44, 1563 (2023)

    Article  Google Scholar 

  11. N.A. Zainal, R. Nazar, K. Naganthran, I. Pop, Chinese J. Phys. 66, 630 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  12. S.I. Abdelsalam, M.M. Bhatti, Sci. Rep. 13, 1 (2023)

    Article  Google Scholar 

  13. M. Shoaib, M.A.Z. Raja, M.T. Sabir, M. Awais, S. Islam, Z. Shah, P. Kumam, Alexandria Eng. J. 60, 3605 (2021)

    Article  Google Scholar 

  14. S.I. Abdelsalam, A.M. Alsharif, Y. Abd Elmaboud, A.I. Abdellateef, Heliyon 9, e15916 (2023)

    Article  Google Scholar 

  15. Q. Ali, M. Amir, A. Raza, U. Khan, S.M. Eldin, A.M. Alotaibi, S. Elattar, A.M. Abed, Front. Mater. 10, 1 (2023)

    Google Scholar 

  16. J. Manigandan, D. Iranian, I. Khan, N.A. Mohammed, H. Alhazmi, Case Stud Therm. Eng. 58, 104386 (2024)

    Article  Google Scholar 

  17. M.D. Shamshuddin, N. Akkurt, A. Saeed, P. Kumam, Alexandria Eng. J. 65, 543 (2023)

    Article  Google Scholar 

  18. F. Saba, N. Ahmed, U. Khan, S.T. Mohyud-din, Int. J. Heat Mass Transf. 136, 186 (2019)

    Article  ADS  Google Scholar 

  19. P.S. Reddy, P. Sreedevi, V.N. Reddy, Chem. Thermodyn. Therm. Anal. 6, 100045 (2022)

    Article  Google Scholar 

  20. P. S. Reddy, P. Sreedevi, S. Venkateswarlu, Waves Random Complex Med. pp 1–23 (2022)

  21. B. Kumbhakar, S. Nandi, Math. Comput. Simul 194, 563 (2022)

    Article  Google Scholar 

  22. M. Hasanuzzaman, M.H. Milon, M.M. Hossain, M. Asaduzzaman, Int. J. Thermofluids 21, 100572 (2024)

    Article  Google Scholar 

  23. H. Waqas, U. Farooq, R. Naseem, S. Hussain, M. Alghamdi, Case Stud Therm. Eng. 26, 101015 (2021)

    Article  Google Scholar 

  24. S. Jakeer, P. Bala Anki Reddy, Phys. Scr. 95, 125203 (2020)

    Article  ADS  Google Scholar 

  25. R. Gunisetty, P. B. A. Reddy, A. Divya, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. (2023). https://doi.org/10.1177/09544089231199640

  26. Adnan, M. Asadullah, U. Khan, N. Ahmed, S.T. Mohyud-Din, J. Mol. Liq. 224, 768 (2016)

    Article  Google Scholar 

  27. M. M. Nandeppanavar, K. M.C., R. N., J. Eng. Des. Technol. 21(1), 150–166 (2023)

  28. M. Ramzan, A. Rafiq, J.D. Chung, S. Kadry, Y.M. Chu, Sci. Rep. 10, 1 (2020)

    Article  ADS  Google Scholar 

  29. A. Razaq, T. Hayat, S.A. Khan, S. Momani, Alexandria Eng. J. 79, 390 (2023)

    Article  Google Scholar 

  30. M.C. Kemparaju, M.M. Nandeppanavar, R. Nagaraj, M. Sreelatha, Int. J. Appl. Comput. Math. 8, 132 (2022)

    Article  Google Scholar 

  31. A. Bejan, J. Heat Transfer 101, 718 (1979)

    Article  Google Scholar 

  32. T. Hayat, S.A. Khan, A. Alsaedi, Q.M.Z. Zia, Appl. Nanosci. 11, 187 (2021)

    Article  ADS  Google Scholar 

  33. W. Ibrahim, D. Gamachu, Heliyon 8, e11854 (2022)

    Article  Google Scholar 

  34. L. Zada, I. Ullah, R. Nawaz, W. Jamshed, E.N. Saddam, S.A. Idris, H. Ahmad, A. Amjad, Case Stud Therm. Eng. 54, 104034 (2024)

    Article  Google Scholar 

  35. N. K. Mishra, P. Sharma, B. K. Sharma, B. Almohsen, L. M. Pérez, Heliyon 10(3), e25102 (2024)

  36. I. Sakthi, R. Das, P. B. Anki, Eur. Phys. J. Spec. Top. 123, 1–17 (2023). https://doi.org/10.1140/epjs/s11734-023-00947-w

  37. N. Vijay, K. Sharma, Numer. Heat Transf. Part B Fundam. 84, 66 (2023)

    Article  ADS  Google Scholar 

  38. P.B. Raafat, F.N. Ibrahim, J. Therm. Anal. Calorim. 148, 4477 (2023)

    Article  Google Scholar 

  39. M.A.Z. Raja, M. Shoaib, Z. Khan, S. Zuhra, C.A. Saleel, K.S. Nisar, S. Islam, I. Khan, Ain Shams Eng. J. 13, 101573 (2022)

    Article  Google Scholar 

  40. N. Hajialigol, R. Daghigh, J. Taiwan Inst. Chem. Eng. 148, 104782 (2023)

    Article  Google Scholar 

  41. A. Shafiq, A.B. Çolak, T.N. Sindhu, Math. Comput. Simul 216, 213 (2024)

    Article  Google Scholar 

  42. M.K. Nayak, A. Patra, S. Shaw, A. Misra, Heat Transf. 50, 2454 (2021)

    Article  Google Scholar 

  43. G. Ramasekhar, P. Bala Anki Reddy, Waves Random Complex Media, pp 1–26 (2022)

  44. M.I. Khan, H. Waqas, S.U. Khan, M. Imran, Y.M. Chu, A. Abbasi, S. Kadry, Int. Commun. Heat Mass Transf. 122, 105161 (2021)

    Article  Google Scholar 

  45. S. Abu Bakar, N. S. Wahid, N. Md Arifin, I. Pop, Arab. J. Sci. Eng. pp 1–16 (2024)

  46. D. Mohanty, G. Mahanta, S. Shaw, Numer. Heat Transf. Part B Fundam. 84, 115 (2023)

    Article  ADS  Google Scholar 

  47. M.K. Singla, J. Gupta, P. Nijhawan, Int. J. Adv. Trends Comput. Sci. Eng. 8, 194 (2019)

    Article  Google Scholar 

  48. S. Shaw, A.S. Dogonchi, M.K. Nayak, O.D. Makinde, Arab. J. Sci. Eng. 45, 5471 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bala Anki Reddy.

Ethics declarations

Conflict of interest

Authors have no actual or potential conflict of interest including financial, personal, or other relationships with other people or organizations. This work has been carried out by the authors: Kakelli Anil Kumar, Sakkaravarthi K and P. Bala Anki Reddy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.A., Sakkaravarthi, K. & Bala Anki Reddy, P. Levenberg–Marquardt neural network for entropy optimization on Casson hybrid nanofluid flow with nonlinear thermal radiation: a comparative study. Eur. Phys. J. Plus 139, 555 (2024). https://doi.org/10.1140/epjp/s13360-024-05359-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05359-w

Navigation