Log in

Simultaneous effect of grain size and indenter dimension on the dislocation nucleation and growth in nanoindentation and nanoscratch processes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are employed to study dislocation movement and wear response of nanocrystalline nickel (Ni). To explore the coefficient of friction values within the range near the Hall–Patch breakdown, samples were prepared with grain sizes ranging from 3.5 to 9.2 nm. Through the simulating a nanoscratching process using a spherical indenter, the concurrent influence of indenter dimensions and grain sizes on the friction coefficient of nanocrystalline Ni is examined. The results indicated that increasing the grain size and indenter dimension in nanocrystalline Ni led to a decrease in the coefficient of friction. Notably, the dimensions of the indenter had a more significant impact on the observed effects compared to the grain size. Also, it is observed that significant dislocation growth occurred during the scratching process when the indenter dimensions are large.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. Y. Zhang, G.J. Tucker, J.R. Trelewicz, Stress-assisted grain growth in nanocrystalline metals: grain boundary mediated mechanisms and stabilization through alloying. Acta Mater. 131, 39–47 (2017)

    Article  ADS  Google Scholar 

  2. C.C. Koch, I.A. Ovid’ko, S. Veprek, S. Seal, Structural Nanocrystalline Materials: Fundamentals and Applications (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  3. H. Van Swygenhoven, J.R. Weertman, Deformation in nanocrystalline metals. Mater. Today 9, 24–31 (2006)

    Article  Google Scholar 

  4. J. Schiøtz, K.W. Jacobsen, A maximum in the strength of nanocrystalline copper. Science 301, 1357–1359 (2003)

    Article  ADS  Google Scholar 

  5. Z. Shan, E.A. Stach, J.M.K. Wiezorek et al., Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654–657 (2004)

    Article  ADS  Google Scholar 

  6. V. Yamakov, D. Wolf, M. Salazar et al., Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 49, 2713–2722 (2001)

    Article  ADS  Google Scholar 

  7. D.A. Hughes, N. Hansen, Exploring the limit of dislocation based plasticity in nanostructured metals. Phys. Rev. Lett. 112, 135504 (2014)

    Article  ADS  Google Scholar 

  8. F. Sansoz, K.D. Stevenson, Relationship between hardness and dislocation processes in a nanocrystalline metal at the atomic scale. Phys. Rev. B 83, 224101 (2011)

    Article  ADS  Google Scholar 

  9. M. Shafiei, A.T. Alpas, Effect of sliding speed on friction and wear behaviour of nanocrystalline nickel tested in an argon atmosphere. Wear 265, 429–438 (2008)

    Article  Google Scholar 

  10. R. Mishra, B. Basu, R. Balasubramaniam, Effect of grain size on the tribological behavior of nanocrystalline nickel. Mater. Sci. Eng. A 373, 370–373 (2004)

    Article  Google Scholar 

  11. N.P. Wasekar, P. Haridoss, S.K. Seshadri, G. Sundararajan, Sliding wear behavior of nanocrystalline nickel coatings: influence of grain size. Wear 296, 536–546 (2012)

    Article  Google Scholar 

  12. Y.-R. Jeng, P.-C. Tsai, S.-H. Chiang, Effects of grain size and orientation on mechanical and tribological characterizations of nanocrystalline nickel films. Wear 303, 262–268 (2013)

    Article  Google Scholar 

  13. T.J. Rupert, C.A. Schuh, Sliding wear of nanocrystalline Ni–W: structural evolution and the apparent breakdown of Archard scaling. Acta Mater. 58, 4137–4148 (2010)

    Article  ADS  Google Scholar 

  14. P. Cavaliere, P. Prete, Tribomechanisms of pure electrodeposited Ni at ultra-fine and nanoscale level. Wear 268, 1490–1503 (2010)

    Article  Google Scholar 

  15. Y. Liu, B. **, D.-J. Li et al., Wear behavior of nanocrystalline structured magnesium alloy induced by surface mechanical attrition treatment. Surf. Coat. Technol. 261, 219–226 (2015)

    Article  Google Scholar 

  16. L. Zhang, Y. Shibuta, X. Huang et al., Grain boundary induced deformation mechanisms in nanocrystalline Al by molecular dynamics simulation: from interatomic potential perspective. Comput. Mater. Sci. 156, 421–433 (2019)

    Article  Google Scholar 

  17. M. Chamani, Three-dimensional multiscale modeling of nanoindentation. J. Mol. Graph. Model. 117, 108324 (2022)

    Article  Google Scholar 

  18. M. Chamani, G.H. Farrahi, M.R. Movahhedy, Molecular dynamics simulation of nanoindentation of nanocrystalline Al/Ni multilayers. Comput. Mater. Sci. 112, 175–184 (2016)

    Article  Google Scholar 

  19. X. Luo, Z. Zhang, L. Chen et al., The near-surface microstructural evolution and the influence of Si particles during nanoscratching of nanocrystalline Al. Appl. Surf. Sci. 573, 151533 (2022)

    Article  Google Scholar 

  20. Z. Wang, T. Sun, H. Zhang et al., The interaction between grain boundary and tool geometry in nanocutting of a bi-crystal copper. Int. J. Extreme Manuf. 1, 045001 (2019)

    Article  Google Scholar 

  21. G.B. Bizana, L.A. Barrales-Mora, 3D grain growth in nanocrystalline Al via molecular dynamics: influence of size, topology and integral mean curvature on grain kinetics. Comput. Mater. Sci. 219, 112009 (2023)

    Article  Google Scholar 

  22. M. Moradi, G.H. Farrahi, M. Chamani, Effect of microstructure on crack behavior in nanocrystalline nickel using molecular dynamics simulation. Theoret. Appl. Fract. Mech. 104, 102390 (2019)

    Article  Google Scholar 

  23. J. French, X.-M. Bai, Molecular dynamics studies of grain boundary mobility and anisotropy in BCC γ-uranium. J. Nucl. Mater. 565, 153744 (2022)

    Article  Google Scholar 

  24. M. Chamani, G.H. Farrahi, Multiscale modeling of nanoindentation and nanoscratching by generalized particle method. J. Mol. Graph. Model. 127, 108675 (2024)

    Article  Google Scholar 

  25. M. Chamani, G.H. Farrahi, M.R. Movahhedy, Friction behavior of nanocrystalline nickel near the Hall–Petch breakdown. Tribol. Int. 107, 18–24 (2017)

    Article  Google Scholar 

  26. Y. Gao, C. Lu, N.N. Huynh et al., Molecular dynamics simulation of effect of indenter shape on nanoscratch of Ni. Wear 267, 1998–2002 (2009)

    Article  Google Scholar 

  27. H.-T. Luu, S.-L. Dang, T.-V. Hoang, N. Gunkelmann, Molecular dynamics simulation of nanoindentation in Al and Fe: on the influence of system characteristics. Appl. Surf. Sci. 551, 149221 (2021)

    Article  Google Scholar 

  28. C.J. Ruestes, A. Stukowski, Y. Tang et al., Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution. Mater. Sci. Eng. A 613, 390–403 (2014)

    Article  Google Scholar 

  29. P.Z. Zhu, Y.Z. Hu, H. Wang, T.B. Ma, Study of effect of indenter shape in nanometric scratching process using molecular dynamics. Mater. Sci. Eng. A 528, 4522–4527 (2011)

    Article  Google Scholar 

  30. R.A. Mirshams, P. Parakala, Nanoindentation of nanocrystalline Ni with geometrically different indenters. Mater. Sci. Eng. A 372, 252–260 (2004)

    Article  Google Scholar 

  31. C. Saringer, M. Tkadletz, M. Kratzer, M.J. Cordill, Direct determination of the area function for nanoindentation experiments. J. Mater. Res. 36, 2154–2165 (2021)

    Article  ADS  Google Scholar 

  32. G.J. Tucker, S.M. Foiles, Molecular dynamics simulations of rate-dependent grain growth during the surface indentation of nanocrystalline nickel. Mater. Sci. Eng. A 571, 207–214 (2013)

    Article  Google Scholar 

  33. A. Hasnaoui, P.M. Derlet, H. Van Swygenhoven, Interaction between dislocations and grain boundaries under an indenter—a molecular dynamics simulation. Acta Mater. 52, 2251–2258 (2004)

    Article  ADS  Google Scholar 

  34. T. Junge, J.-F. Molinari, Plastic activity in nanoscratch molecular dynamics simulations of pure aluminium. Int. J. Plast. 53, 90–106 (2014)

    Article  Google Scholar 

  35. G.P. Purja Pun, Y. Mishin, Development of an interatomic potential for the Ni–Al system. Phil. Mag. 89, 3245–3267 (2009)

    Article  ADS  Google Scholar 

  36. E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles, W.D. Nix, Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901–920 (2003)

    Article  ADS  Google Scholar 

  37. J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987)

    Article  Google Scholar 

  38. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  Google Scholar 

  39. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  ADS  Google Scholar 

  40. J. Li, J. Guo, H. Luo et al., Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Appl. Surf. Sci. 364, 190–200 (2016)

    Article  ADS  Google Scholar 

  41. J. Li, B. Lu, H. Zhou et al., Molecular dynamics simulation of mechanical properties of nanocrystalline platinum: grain-size and temperature effects. Phys. Lett. A 383, 1922–1928 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chamani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamani, M. Simultaneous effect of grain size and indenter dimension on the dislocation nucleation and growth in nanoindentation and nanoscratch processes. Eur. Phys. J. Plus 139, 426 (2024). https://doi.org/10.1140/epjp/s13360-024-05251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05251-7

Navigation