Log in

Simulations of quantum walks on beam splitter arrays modeled as higher-order rotations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present a comprehensive matrix representation of a beam splitter array, incorporating multiple input and output channels. We propose treating each beam splitter as rotational matrices of a 2n-th-dimensional space. With these operators, the matrix that describes the entire square array and, consequently, the final probability distribution of an input photon state can be calculated. Furthermore, square and non-square arrays are explored using the same approach, encompassing certain interferometer arrays, the quantum quincunx, and the discrete quantum Zeno effect. In addition, we show the versatility of the proposed operator by using it to map the action of field operators in the description of multiphoton inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48, 1687 (1993). https://doi.org/10.1103/PhysRevA.48.1687

    Article  ADS  CAS  PubMed  Google Scholar 

  2. B.C. Travaglione, G.J. Milburn, Phys. Rev. A 65, 032310 (2002). https://doi.org/10.1103/PhysRevA.65.032310

    Article  ADS  CAS  Google Scholar 

  3. J. Kempe, Contemp. Phys. 44, 307 (2003). https://doi.org/10.1080/00107151031000110776

    Article  ADS  Google Scholar 

  4. P.K. Pathak, G.S. Agarwal, Phys. Rev. A 75, 032351 (2007). https://doi.org/10.1103/PhysRevA.75.032351

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A.P.K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M.G. Thompson, J.L. OBrien, Science 329, 1500 (2010). https://doi.org/10.1126/science.1193515

    Article  ADS  CAS  PubMed  Google Scholar 

  6. K. Mayer, M.C. Tichy, F. Mintert, T. Konrad, A. Buchleitner, Phys. Rev. A 83, 062307 (2011). https://doi.org/10.1103/PhysRevA.83.062307

    Article  ADS  CAS  Google Scholar 

  7. A. Schreiber, A. Gábris, P.P. Rohde, K. Laiho, M. Štefaňák, V. Potoček, C. Hamilton, I. Jex, C. Silberhorn, Science 336, 55 (2012). https://doi.org/10.1126/science.1218448

    Article  ADS  CAS  PubMed  Google Scholar 

  8. C. Chandrashekar, S. Melville, T. Busch, J. Phys. B 47, 085502 (2014). https://doi.org/10.1088/0953-4075/47/8/085502

    Article  ADS  CAS  Google Scholar 

  9. A. Sarkar, C.M. Chandrashekar, Nature 9, 1 (2019). https://doi.org/10.1038/s41598-019-48844-4

    Article  CAS  Google Scholar 

  10. Z. Zhang, J. Song, Y. Zhao, Optik 206, 164288 (2020). https://doi.org/10.1016/j.ijleo.2020.164288

    Article  ADS  Google Scholar 

  11. S. Weidemann, M. Kremer, S. Longhi, A. Szameit, Nature 601, 354 (2022). https://doi.org/10.1038/s41586-021-04253-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. H. Tonchev, P. Danev, Results Phys. 46, 106327 (2023). https://doi.org/10.1016/j.rinp.2023.106327

    Article  Google Scholar 

  13. F.D. Colandrea, A. Babazadeh, A. Dauphin, P. Massignan, L. Marrucci, F. Cardano, Optica 10, 324 (2023). https://doi.org/10.1364/OPTICA.474542

    Article  ADS  CAS  Google Scholar 

  14. N. Shenvi, J. Kempe, K. BirgittaWhaley, Phys. Rev. A 67, 052307 (2003). https://doi.org/10.1103/PhysRevA.67.052307

    Article  ADS  CAS  Google Scholar 

  15. J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, R. Han, Phys. Rev. A 67, 042316 (2003). https://doi.org/10.1103/PhysRevA.67.042316

    Article  ADS  CAS  Google Scholar 

  16. B. Yurke, S.L. McCall, J.R. Klauder, Phys. Rev. A 33, 4033 (1986). https://doi.org/10.1103/PhysRevA.33.4033

    Article  ADS  CAS  Google Scholar 

  17. Z. Blanco-Garcia, O. Rosas-Ortiz, J. Phys.: Conf. Ser. 698, 012013 (2016). https://doi.org/10.1088/1742-6596/698/1/012013

    Article  CAS  Google Scholar 

  18. A.C. Elitzur, L. Vaidman, Found. Phys. 23, 987 (1993). https://doi.org/10.1007/BF00736012

    Article  ADS  Google Scholar 

  19. P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, M.A. Kasevich, Phys. Rev. Lett. 74, 4763 (1995). https://doi.org/10.1103/PhysRevLett.74.4763

    Article  ADS  CAS  PubMed  Google Scholar 

  20. C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University Press, New York, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Estrada-Delgado.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada-Delgado, M.I., Blanco-Garcia, Z. Simulations of quantum walks on beam splitter arrays modeled as higher-order rotations. Eur. Phys. J. Plus 139, 261 (2024). https://doi.org/10.1140/epjp/s13360-024-05050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05050-0

Navigation