Log in

Examination of charge-carriers hop** and identification of relaxation phenomenon and blocking effect in perovskite system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

La0.8Na0.2MnO3 perovskite is successfully synthesized using the conventional solid-state reaction. X-ray diffraction diagram confirms the perovskite compound formation and reveals that the prepared material is crystallized in the rhombohedral structure. Equally, the chemical analysis confirms the theoretical Mn3+/Mn4+ ratio. The complex impedance analysis displays the electrically inhomogeneous nature of LNMO system. Then, it is observed that the electro-active regions are overlapped in the explored frequency range with dominance of grain boundaries effects. The decrease in the blocking factor with temperature increasing reveals the release of charge-carriers from grain boundaries for participating in the conduction process. Moreover, the presence of an inductive character is demonstrated. The electrical conductivity analysis proves the contribution of polaronic and electronic transport in the conduction process. It precisely elucidates the temperature dependence of the energy and distance of electrons hop**. The conductivity spectra investigation is described by the universal dynamic response. The impedance Z″ and the conductivity spectra prove the presence of relaxation process in the studied system. The resemblance and the difference between the calculated activation energies confirm the synchronization of the relaxation phenomenon with hop** process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

The data included in this manuscript are available and can be discussed (or shared), on request from the corresponding author. This manuscript has associated data in a data repository.

References

  1. A. Miri, M.H. Ehsania, S. Esmaeili, Structural and electrical properties of gadolinium-substituted La0.6xGdxSr0.4MnO3 (x=0–0.3). Eur. Phys. J. Plus 138, 1 (2023)

    Article  CAS  Google Scholar 

  2. Z. **e, X. Jiang, Z. Zou, Investigations on structure, magnetic and magnetocaloric of La0.8Sr0.2Mn1xNixO3(x = 0.05, 0.10, and 0.15) at room temperature. Eur. Phys. J. Plus 137, 1350 (2022)

    Article  CAS  Google Scholar 

  3. J. Hu, R. Rao, X. Zhang, M. Wang, M. Wang, S. Wang, G. Zheng, Y. Ma, Magnetic properties of the La0.9Ca0.1MnO3 polycrystalline under the pressure. Eur. Phys. J. Plus 137, 1000 (2022)

    Article  CAS  Google Scholar 

  4. N.T. Dang, V.S. Zakhvalinskii, D.P. Kozlenko, T.L. Phan, S.E. Kichanov, S.V. Trukhanov, A.V. Trukhanov, Y.S. Nekrasova, S.V. Taran, S.V. Ovsyannikov, S.H. Jabarov, Effect of Fe do** on structure and magnetotransport properties of perovskite manganite. Eur. Phys. J. Plus 133, 296 (2018)

    Article  Google Scholar 

  5. R. Hanen, A. Mleiki, H. Rahmouni, N. Guermazi, K. Khirouni, E.K. Hlil, A. Cheikhrouhou, Effect of the nature of the dopant element on the physical properties of X-PrCaMnO system (X= Cd, Sr, and Pb). J. Magn. Magn. Mater. 508, 166810 (2020)

    Article  CAS  Google Scholar 

  6. H. Zhang, Y. Xu, J. Tan, X. Zhang, B. Guo, J. Ya, J. Li, Z. Shi, H. Wei, Z. Liu, A. **a, Structural, magnetic and magnetocaloric properties in. Eur. Phys. J. Plus 137, 1335 (2022)

    Article  CAS  Google Scholar 

  7. W. Hizi, H. Rahmouni, M. Gassoumi, K. Khirouni, S. Dhahri, Transport properties of La0.9Sr0.1MnO3 manganite. Eur. Phys. J. Plus 135, 1 (2020)

    Article  Google Scholar 

  8. A. Žužić, L. Pavić, A. Bafti, S. Marijan, J. Macan, A. Gajović, The role of the A-site cation and crystal structure on the electrical conductivity of strontium-doped calcium and barium manganites. J. Alloys Compd. 935, 167949 (2023)

    Article  Google Scholar 

  9. P. Narwat, R.J. Choudhary, A. Mishra, Electrical transport mechanism and magnetoresistive behavior of trilayer La0.7Sr0.3MnO3/γ-Fe2O3/La0.7Sr0.3MnO3 (FM/FIM/FM) manganites. Phys. Scr. 98, 055934 (2023)

    Article  ADS  Google Scholar 

  10. P. Amalthi, J. Judith Vijaya, R. Thinesh Kumar, L. John Kennedy, M. Bououdina, B. Saravanakumar, Microwave-aided fabrication of calcium-substituted DyMnO3 nanocomposites as prospective battery-type electrode material for supercapacitors. Mater. Sci. Eng. B 298, 116845 (2023)

    Article  CAS  Google Scholar 

  11. S.S.A. Gillani, U. Ashraf, I. Zeba, M. Shakil, M. Rafique, R. Ahmad, A. Maqsood, Phase stability, band gap engineering and optical response of Li-, Be-and Mg-doped SrZrO3 perovskite: theoretical perspective with GGA-PBE. Eur. Phys. J. Plus 136, 1065 (2021)

    Article  CAS  Google Scholar 

  12. M. Sugimoto, Z. Zhu, S. Gopalan, Basu, U.B. Pal, Chromium poisoning mitigation strategy in strontium-doped lanthanum manganite-based air electrodes in solid oxide fuel cells. J. Electrochem. Energy Convers. Storage 21, 011003 (2024)

    Article  CAS  Google Scholar 

  13. Z. Liang, S. Yang, H. Wang, Y. Li, J. Li, B. Hou, J. Li, J. Wang, L. Wu, H. Zhang, Q. Chen, J. Ma, Temperature coefficient of resistance improvement in La0.67Ca0.33MnO3 polycrystalline ceramics with vanadium addition. Ceram. Int. 49, 13578 (2023)

    Article  CAS  Google Scholar 

  14. S. Nagamuthu, S. Vijayakumar, K.-S. Ryu, Cerium oxide mixed LaMnO3 nanoparticles as the negative electrode for aqueous asymmetric supercapacitor devices. Mater. Chem. Phys. 199, 543 (2017)

    Article  CAS  Google Scholar 

  15. S. Manishanma, A. Dutta, Synthesis and characterization of nickel doped LSM as possible cathode materials for LT-SOFC application. Mater. Chem. Phys. 297, 127438 (2023)

    Article  CAS  Google Scholar 

  16. J.H. Choi, J.H. Jang, J.H. Ryu, S.M. Oh, Microstructure and cathodic performance of La0.9Sr0.1MnO3 electrodes according to particle size of starting powder. J. Power. Sources 87, 92 (2000)

    Article  CAS  ADS  Google Scholar 

  17. B.P. McCarthy, L.R. Pederson, Y.S. Chou, X.-D. Zhou, W.A. Surdoval, L.C. Wilson, Low-temperature sintering of lanthanum strontium manganite-based contact pastes for SOFCs. J. Power. Sources 180, 294 (2008)

    Article  CAS  ADS  Google Scholar 

  18. K. Wu, X. Guan, H. Li, X. Gu, Z. Yu, S. **, X. Yu, Y. Yan, L. Zhao, H. Liu, X. Liu, Enhanced electrical transport properties of polycrystalline La0.67SrxCa0.23-xK0.1MnO3 ceramics through A-site multielement co-do**. Ceram. Int. 49, 1344 (2023)

    Article  CAS  Google Scholar 

  19. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. H. Rahmouni, B. Cherif, K. Khirouni, M. Baazaoui, S. Zemni, Influence of polarization and iron content on the transport properties of praseodymium–barium manganite. J. Phys. Chem. Solids 88, 35 (2016)

    Article  CAS  ADS  Google Scholar 

  21. W. Hizi, H. Rahmouni, K. Khirouni, E. Dhahri, Nanoparticles size effect on transport properties of doped manganite elaborated by sol–gel route. J. Mater. Sci. Mater. Electron. 34, 1173 (2023)

    Article  CAS  Google Scholar 

  22. S. Gowreesan, A. Ruban Kumar, Structural, magnetic, and electrical property of nanocrystalline perovskite structure of iron manganite (FeMnO3). Appl. Phys. A 123, 689 (2017)

    Article  Google Scholar 

  23. M.A. Rashid, M. Saiduzzaman, A. Biswa, K.M. Hossain, First-principles calculations to explore the metallic behavior of semiconducting lead-free halide perovskites RbSnX3 (X= Cl, Br) under pressure. Eur. Phys. J. Plus 137, 649 (2022)

    Article  CAS  Google Scholar 

  24. F. Yan, T. Wang, T. Jiao, Z. Jiao, X. He, J. Bai, G. Zhao, Effect of Nd do** on the electrical transport properties of La0.67Ca0.33MnO3 thin films. J. Mater. Sci. Materi. Electron. 33, 12310 (2022)

    Article  CAS  Google Scholar 

  25. D.I. Pchelina, V.D. Sedykh, N.I. Chistyakova, V.S. Rusakov, Y.A. Alekhina, A.N. Tselebrovskiy, B. Fraisse, L. Stievano, M.T. Sougrati, The structural and magnetic features of perovskite oxides La1–xSrxMnO3+δ (x = 0.05, 0.10, 0.20) depending on the strontium do** content and heat treatment. Ceram. Int. 49, 10774 (2023)

    Article  CAS  Google Scholar 

  26. Y. **n, L. Shi, J. Zhao, X. Yuan, L. Hou, R. Tong, Electrical transport properties driven by magnetic competition in hole-doped perovskite Pr1-xBaxMnO3 (0.25 ≤ x ≤ 0.36). Ceram. Int. 47, 19464 (2021)

    Article  CAS  Google Scholar 

  27. G.F. Wang, L.R. Li, Z.R. Zhao, X.Q. Yu, X.F. Zhang, Structural and magnetocaloric effect of Ln0.67Sr0.33MnO3 (Ln=La, Pr and Nd) nanoparticles. Ceram. Int. 40, 16449 (2014)

    Article  CAS  Google Scholar 

  28. D. Grossin, J.G. Noudem, Synthesis of fine La0.8Sr0.2MnO3 powder by different ways. Solid State Sci. 6, 939 (2004)

    Article  CAS  ADS  Google Scholar 

  29. M. Romero-Sánchez, T. Sánchez-Mera, J. Santos-Cruz, C.E. Pérez-García, M.L. Olvera, C.R. Santillán-Rodríguez, J. Matutes-Aquino, G. Contreras-Puente, F. de Moure-Flores, Effect of sintering time on structural, morphological and electrical properties of Sb-doped Bi1.6Pb0.4Sr2Ca2Cu3Oy superconductor. Ceram. Int. 48, 16049 (2022)

    Article  Google Scholar 

  30. W. Hizi, H. Rahmouni, K. Khirouni, E. Dhahri, Consistency between theoretical conduction models and experimental conductivity measurements of strontium-doped lanthanum manganite. J. Alloys Compd. 957, 170418 (2023)

    Article  CAS  Google Scholar 

  31. L. Conceição, C.R.B. Silva, N.F.P. Ribeiro, M.M.V.M. Souza, Solid-state synthesis of La0.7Sr0.3MnO3 powders using different grinding times. ECS Trans. 25, 2301 (2009)

    Article  Google Scholar 

  32. Y. Kalyana Lakshmi, P. Venugopal Reddy, Influence of sintering temperature and oxygen stoichiometry on electrical transport properties of La0.67Na0.33MnO3 manganite. J. Alloys Compd. 470, 67 (2009)

    Article  CAS  Google Scholar 

  33. M. Arunachalam, P. Thamilmaran, S. Sankarrajan, K. Sakthipandi, Ultrasonic studies on sodium-doped LaMnO3 perovskite material. Cogent Phys. 2, 1067344 (2015)

    Article  Google Scholar 

  34. A.I. Tovstolytkin, A.N. Pogorily, V.V. Kotov, A.G. Belous, O.I. V’yunov, Effect of the crystal structure defectiveness on magnetic state of sodium-doped lanthanum manganites. Funct. Mater. 11, 721 (2004)

    CAS  Google Scholar 

  35. M.C. Dimri, H. Khanduri, R. Stern, Effects of aliovalent dopants in LaMnO3: magnetic, structural and transport properties. J. Magn. Magn. Mater. 536, 168111 (2021)

    Article  CAS  Google Scholar 

  36. S. Roy, Y.Q. Guo, S. Venkatesh, N. Ali, Interplay of structure and transport properties of sodium-doped lanthanum manganite. J. Phys. Condens. Matter 13, 9547 (2001)

    Article  CAS  ADS  Google Scholar 

  37. D. Varshney, D. Choudhary, M.W. Shaikh, E. Khan, Electrical resistivity behaviour of sodium substituted manganites: electron–phonon, electron–electron and electron–magnon interactions. Eur. Phys. J. B. 76, 327 (2010)

    Article  CAS  ADS  Google Scholar 

  38. L. Malavasi, M.C. Mozzati, I. Alessandri, L.E. Depero, C.B. Azzoni, G. Flor, Sodium-doped LaMnO3 thin films: influence of substrate and thickness on physical properties. J. Phys. Chem. B 108, 13643 (2004)

    Article  CAS  Google Scholar 

  39. S. Zhang, G. Dong, Y. Liu, H. Li, K. Chu, X. Pu, X. Yu, X. Liu, Effect of Na-do** on structural, electrical, and magnetoresistive properties of La0.7(Ag0.3-xNax)0.3MnO3 polycrystalline ceramics. Ceram. Int. 46, 584 (2020)

    Article  CAS  Google Scholar 

  40. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951)

    Article  CAS  ADS  Google Scholar 

  41. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  42. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41 (1969)

    Article  CAS  ADS  Google Scholar 

  43. P. Nagels, Electronic Transport in Amorphous Semiconductors, Amorphous Semiconductors (Springer, Berlin, Heidelberg, 1979), p.113

    Google Scholar 

  44. N.F. Mott, Conduction in non-crystalline materials. Philos. Mag. 19, 835 (1969)

    Article  CAS  ADS  Google Scholar 

  45. N.F. Mott, Polarons. Mater. Res. Bull. 13, 1389–1394 (1978)

    Article  CAS  Google Scholar 

  46. N.F. Mott, Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1, 1 (1968)

    Article  CAS  ADS  Google Scholar 

  47. N.F. Mott, The origin of some ideas on non-crystalline materials. J. Non-Cryst. Solids 28, 147 (1978)

    Article  CAS  ADS  Google Scholar 

  48. N.F. Mott, E.A. Davis, R.A. Street, States in the gap and recombination in amorphous semiconductors. Philos. Mag. 32, 961 (1975)

    Article  CAS  ADS  Google Scholar 

  49. G.N. Greaves, Small polaron conduction in V2O5–P2O5 glasses. J. Non-Cryst. Solids 11, 427 (1973)

    Article  CAS  ADS  Google Scholar 

  50. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984)

    Book  Google Scholar 

  51. L. Dessemond, R. Muccillo, M. Hénault, M. Kleitz, Electric conduction-blocking effects of voids and second phases in stabilized zirconia. Appl. Phys. A 57, 57 (1993)

    Article  ADS  Google Scholar 

  52. P. Scherrer, Determination of the size and internal structure of colloidal particles using X-rays. Nachr. Ges. Wiss. Göttingen Math. Phys. Klasse 1918, 98 (1918)

    Google Scholar 

  53. W. Hizi, H. Rahmouni, K. Khirouni, E. Dhahri, Investigation of charge-carriers dynamics and sub/super-linear response for La0.8Na0.2-xMnO3 (x= 0 and 0.1) perovskite ceramics. Phys. B Condens. Matter 673, 415423 (2024)

    Article  CAS  Google Scholar 

  54. K. Hayat, M.A. Rafiq, S.K. Durrani, M.M. Hasan, Impedance spectroscopy and investigation of conduction mechanism in BaMnO3 nanorods. Phys. B 406, 309 (2011)

    Article  CAS  ADS  Google Scholar 

  55. D. Thiele, A. Zuttel, Electrochemical characterisation of air electrodes based on La0.6Sr0.4CoO3 and carbon nanotubes. J. Power. Sources 183, 590 (2008)

    Article  CAS  ADS  Google Scholar 

  56. T. Soboleva, Z. **e, Z. Shi, E. Tsang, T. Navessin, S. Holdcroft, Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes. J. Electroanal. Chem. 622, 145 (2008)

    Article  CAS  Google Scholar 

  57. M.G. Smitha, H.L. Sandeep Kumar, A. Shwetha, Morphological, structural, electrical impedance, and equivalent circuit analysis of polypyrrole/barium substituted lanthanum manganite (La0.7Ba0.3MnO3) perovskite nanocomposites. Int. J. Polym. Anal. Charact. 28, 241 (2023)

    Article  Google Scholar 

  58. H. Rahmouni, B. Cherif, M. Smari, E. Dhahri, N. Moutiaa, K. Khirouni, Effect of exceeding the concentration limit of solubility of silver in perovskites on the dielectric and electric properties of half doped lanthanum-calcium manganite. Phys. B Phys. Condens. Matter 473, 1 (2015)

    Article  CAS  ADS  Google Scholar 

  59. K. Hayat, M. Nadeem, M. Javid Iqbal, M.A. Rafiq, M.M. Hasan, Analysis of electro-active regions and conductivity of BaMnO3 ceramic by impedance spectroscopy. Appl. Phys. A 115, 1281 (2014)

    Article  CAS  ADS  Google Scholar 

  60. J. Suchanicz, The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater. Sci. Eng. B 55, 114 (1998)

    Article  Google Scholar 

  61. J. Hu, H. Qin, Giant magnetoimpedance effect in La0.7Ca0.3MnO3 under low magnetic fields. J. Magn. Magn. Mater. 231, 1 (2001)

    Article  ADS  Google Scholar 

  62. W.-H. Jung, Variable range hop** conduction in Gd1/3Sr2/3FeO3. Phys. B Condens. Matter 304, 75 (2001)

    Article  CAS  ADS  Google Scholar 

  63. A.K. Jonscher, The universal dielectric response. Nature (London) 267, 673 (1977)

    Article  CAS  ADS  Google Scholar 

  64. E.F. Hairetdinov, N.F. Uvarov, H.K. Patel, S.W. Martin, Estimation of the free-charge-carrier concentration in fast-ion conducting Na2S–B2S3 glasses from an analysis of the frequency-dependent conductivity. Phys. Rev. B 50, 13259 (1994)

    Article  CAS  ADS  Google Scholar 

  65. O.N. Verma, N.K. Singh, Raghvendra, P. Singh, Study of ion dynamics in lanthanum aluminate probed by conductivity spectroscopy. RSC Adv. 5, 21614 (2015)

    Article  CAS  ADS  Google Scholar 

  66. M. Idrees, M. Nadeem, M.M. Hassan, Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopy. J. Phys. D Appl. Phys. 43, 155401 (2010)

    Article  ADS  Google Scholar 

  67. E. Iguchi, K. Ueda, W.H. Jung, Conduction in LaCoO3 by small-polaron hop** below room temperature. Phys. Rev. B 54, 17431 (1996)

    Article  CAS  ADS  Google Scholar 

  68. S. Komine, E. Iguchi, Dielectric properties in LaFe0.5Ga0.5O3. J. Phys. Chem. Solids 68, 1504 (2007)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Tunisian Ministry of Higher Education and Scientific Research.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have accepted full responsibility for the content of this manuscript and have given their approval to its submission.

Corresponding author

Correspondence to Wided Hizi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animal or human participants performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hizi, W., Wali, M., Rahmouni, H. et al. Examination of charge-carriers hop** and identification of relaxation phenomenon and blocking effect in perovskite system. Eur. Phys. J. Plus 139, 156 (2024). https://doi.org/10.1140/epjp/s13360-024-04968-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04968-9

Navigation