Log in

Stochastic optical solitons of the perturbed nonlinear Schrödinger equation with Kerr law via Ito calculus

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we studied stochastic perturbed nonlinear Schrödinger equation in fibers with Kerr law nonlinearity. The investigated model is important for the optical pulse propagation in fibers. In addition, we introduced the stochastic version of the related model. We have used the F-expansion method to obtain optical soliton solutions. As a result of the implementation, we reached dark, bright, periodic-singular and periodic soliton solutions. Besides all, we have investigated the white noise effect on the obtained results by simulating the graphics. Moreover, we discussed the effects of some parameters by presenting them in 2D views. The strength face of this study are introducing the stochastic model, obtaining its solutions, investigating noise and parameter effects for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. J. Qu, Soliton solutions for quasilinear Schrödinger equations. Journal of Applied Mathematics (2013). https://doi.org/10.1155/2013/953296

    Article  MATH  Google Scholar 

  2. M. Gedalin, T.C. Scott, Y.B. Band, Optical solitary waves in the higher order nonlinear schrödinger equation. Phys. Rev. Lett. 78, 448–451 (1997). https://doi.org/10.1103/PhysRevLett.78.448

    Article  ADS  Google Scholar 

  3. R.S. Tasgal, M.J. Potasek, Soliton solutions to coupled higher-order nonlinear Schrödinger equations. J. Math. Phys. 33(3), 1208–1215 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Bekenstein, R. Schley, M. Mutzafi, C. Rotschild, M. Segev, Optical simulations of gravitational effects in the Newton-Schrödinger system. Nat. Phys. 11(10), 872–878 (2015). https://doi.org/10.1038/nphys3451

    Article  Google Scholar 

  5. S. Longhi, Fractional Schrödinger equation in optics, Optics Letters 40 (6) (2015) 1117. arxiv:1501.02061, https://doi.org/10.1364/OL.40.001117

  6. W.X. Ma, A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations, Mod. Phys. Lett. B 36:20. https://doi.org/10.1142/S0217984922500944

  7. W.X. Ma, Sasa-Satsuma type matrix integrable hierarchies and their Riemann-Hilbert problems and soliton solutions. Physica D: Nonlinear Phenomena 446, 133672 (2023). https://doi.org/10.1016/j.physd.2023.133672

    Article  MathSciNet  MATH  Google Scholar 

  8. W.X. Ma, Soliton hierarchies and soliton solutions of type (-\(\lambda \)*, -\(\lambda \) ) reduced nonlocal nonlinear Schrödinger equations of arbitrary even order. Partial Diff. Equ. Appl. Math. 7, 100515 (2023). https://doi.org/10.1016/j.padiff.2023.100515

    Article  Google Scholar 

  9. W.-X. Ma, Soliton solutions to constrained nonlocal integrable nonlinear Schrödinger hierarchies of type (-\(\lambda \), \(\lambda \)), Int. J. Geom. Meth. Modern Phys. https://doi.org/10.1142/S0219887823500986

  10. W.-X. Ma, Integrable nonlocal nonlinear schrödinger hierarchies of type (-\(\lambda *\), \(\lambda \)) and soliton solutions. Reports Math. Phys. 92(1), 19–36 (2023). https://doi.org/10.1016/S0034-4877(23)00052-6

    Article  ADS  MathSciNet  Google Scholar 

  11. W. Gao, B. Ghanbari, H. Günerhan, H.M. Baskonus, Some mixed trigonometric complex soliton solutions to the perturbed nonlinear schrödinger equation. Modern Phys. Lett. B 34, 2050034 (2020). https://doi.org/10.1142/S0217984920500347

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Jhangeer, W.A. Faridi, M.I. Asjad, A. Akgül, Analytical study of soliton solutions for an improved perturbed Schrödinger equation with Kerr law non-linearity in non-linear optics by an expansion algorithm. Partial Diff. Equ. Appl. Math. 4, 100102 (2021). https://doi.org/10.1016/j.padiff.2021.100102

    Article  Google Scholar 

  13. M.-Y. Wang, Optical solitons of the perturbed nonlinear Schrödinger equation in Kerr media. Optik 243, 167382 (2021). https://doi.org/10.1016/j.ijleo.2021.167382

    Article  ADS  Google Scholar 

  14. N. Mahak, G. Akram, The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Optik 207, 164467 (2020). https://doi.org/10.1016/j.ijleo.2020.164467

    Article  ADS  Google Scholar 

  15. M.S. Aldhabani, K. Nonlaopon, S. Rezaei, F.S. Bayones, S. Elagan, S.A. El-Marouf, Abundant solitary wave solutions to a perturbed Schrödinger equation with Kerr law nonlinearity via a novel approach. Results Phys. 35, 105385 (2022). https://doi.org/10.1016/j.rinp.2022.105385

    Article  Google Scholar 

  16. Z.-Y. Zhang, Z.-H. Liu, X.-J. Miao, Y.-Z. Chen, New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Appl. Math. Comput. 216(10), 3064–3072 (2010). https://doi.org/10.1016/j.amc.2010.04.026

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Akram, N. Mahak, Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Eur. Phys. J. Plus 133(6), 212 (2018). https://doi.org/10.1140/epjp/i2018-12061-7

    Article  Google Scholar 

  18. Z.-Y. Zhang, Z.-H. Liu, X.-J. Miao, Y.-Z. Chen, Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Phys. Lett. A 375(10), 1275–1280 (2011). https://doi.org/10.1016/j.physleta.2010.11.070

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. Zulfiqar, J. Ahmad, Dynamics of new optical solutions of fractional perturbed Schrödinger equation with Kerr law nonlinearity using a mathematical method. Opt. Quantum Electron. 54(3), 1–18 (2022). https://doi.org/10.1007/s11082-022-03598-8

    Article  Google Scholar 

  20. R.-K. Du, Exact solution of perturbed nonlinear Schrödinger equation with variable coefficient and Kerr law. Optik 245, 167716 (2021). https://doi.org/10.1016/j.ijleo.2021.167716

    Article  ADS  Google Scholar 

  21. Y. Zhou, M. Wang, Y. Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. Sect. A Gen. Atom. Solid State Phys. 308(1), 31–36 (2003). https://doi.org/10.1016/S0375-9601(02)01775-9

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Liu, K. Yang, The extended F-expansion method and exact solutions of nonlinear PDEs. Chaos, Solitons and Fractals 22(1), 111–121 (2004). https://doi.org/10.1016/j.chaos.2003.12.069

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. D. Wang, H.Q. Zhang, Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation. Chaos, Solitons and Fractals 25(3), 601–610 (2005). https://doi.org/10.1016/j.chaos.2004.11.026

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. M. Wang, X. Li, Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations. Phys. Lett. Sect. A Gen. Atom. Solid State Phys. 343(1–3), 48–54 (2005). https://doi.org/10.1016/j.physleta.2005.05.085

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Onder, A. Secer, M. Bayram, Soliton solutions of coupled resonant Davey-Stewartson system and modulation instability analysis. Physica Scripta 98(3), 035203 (2023). https://doi.org/10.1088/1402-4896/acb680

    Article  ADS  Google Scholar 

  26. K. Itô, Stochastic integral. Proceedings of the Japan Academy, Series A, Mathematical Sciences 20(8), 519–524 (2009). https://doi.org/10.3792/pia/1195572786

    Article  MathSciNet  MATH  Google Scholar 

  27. U. Hassler, Stochastic Processes and Calculus, Springer Texts in Business and Economics, Springer International Publishing. Cham (2016). https://doi.org/10.1007/978-3-319-23428-1

    Article  Google Scholar 

  28. M.A. Abdelrahman, W.W. Mohammed, M. Alesemi, S. Albosaily, The effect of multiplicative noise on the exact solutions of nonlinear schrödinger equation. AIMS Math. 6(3), 2970–2980 (2021). https://doi.org/10.3934/math.2021180

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Secer, Stochastic optical solitons with multiplicative white noise via Itô calculus. Optik 268, 169831 (2022). https://doi.org/10.1016/j.ijleo.2022.169831

    Article  ADS  Google Scholar 

  30. H. Cakicioglu, M. Ozisik, A. Secer, M. Bayram, Stochastic dispersive Schrödinger-Hirota equation having parabolic law nonlinearity with multiplicative white noise via Ito calculus. Optik 279, 170776 (2023). https://doi.org/10.1016/j.ijleo.2023.170776

    Article  ADS  Google Scholar 

  31. M.Z. Baber, N. Ahmed, M.W. Yasin, M.S. Iqbal, A. Akgül, M.B. Riaz, M. Rafiq, A. Raza, Comparative analysis of numerical with optical soliton solutions of stochastic Gross-Pitaevskii equation in dispersive media. Res. Phys. 44, 106175 (2023). https://doi.org/10.1016/j.rinp.2022.106175

    Article  Google Scholar 

  32. W.-A. Li, B. Tian, Stochastic solitons in a two-layer fluid system. Chinese Journal of Physics 81, 155–161 (2023). https://doi.org/10.1016/j.cjph.2022.09.020

    Article  ADS  MathSciNet  Google Scholar 

  33. W.W. Mohammed, C. Cesarano, The soliton solutions for the (4 + 1)-dimensional stochastic Fokas equation. Math. Meth. Appl. Sci. 46(6), 7589–7597 (2023). https://doi.org/10.1002/mma.8986

    Article  MathSciNet  Google Scholar 

  34. E.M.E. Zayed, M.E.M. Alngar, R.M.A. Shohib, A. Biswas, Y. Yıldırım, L. Moraru, S. Moldovanu, P.L. Georgescu, Dispersive Optical Solitons with Differential Group Delay Having Multiplicative White Noise by Itô Calculus. Electronics 12(3), 634 (2023). https://doi.org/10.3390/electronics12030634

    Article  Google Scholar 

  35. Y. **e, Exact solutions for Wick-type stochastic coupled KdV equations. Phys. Lett. Sect. A Gen. Atom. Solid State Phys. 327(2–3), 174–179 (2004). https://doi.org/10.1016/j.physleta.2004.05.026

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Zhong, B. Tian, H.L. Zhen, W.R. Sun, Stochastic soliton solutions of the high-order nonlinear schrödinger equation in the optical fiber with stochastic dispersion and nonlinearity Zeitschrift fur Naturforschung - Section A. J. Phys. Sci. 69(1–2), 21–33 (2014). https://doi.org/10.5560/ZNA.2013-0071

    Article  Google Scholar 

  37. S. Albosaily, W.W. Mohammed, M.A. Aiyashi, M.A. Abdelrahman, Exact solutions of the (2 + 1)-dimensional stochastic chiral nonlinear schrödinger equation. Symmetry 12(11), 1–12 (2020). https://doi.org/10.3390/sym12111874

    Article  Google Scholar 

  38. H.M. Yin, B. Tian, J. Chai, X.Y. Wu, Stochastic soliton solutions for the (2+1)-dimensional stochastic Broer-Kaup equations in a fluid or plasma. Applied Mathematics Letters 82, 126–131 (2018). https://doi.org/10.1016/j.aml.2017.12.005

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Sirisubtawee, S. Koonprasert, S. Sungnul, New exact solutions of the conformable space-time Sharma-Tasso-Olver equation using two reliable methods. Symmetry 12(4), 644 (2020). https://doi.org/10.3390/SYM12040644

    Article  ADS  Google Scholar 

Download references

Funding

No funding for this article.

Author information

Authors and Affiliations

Authors

Contributions

All parts contained in the research carried out by the authors through hard work and a review of the various references and contributions in the field of mathematics and Applied physics.

Corresponding author

Correspondence to Mustafa Bayram.

Ethics declarations

Ethical approval

The Corresponding Author, declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere. The Corresponding Author confirm that the manuscript has been read and approved by all the named authors and there are no other personswho satisfied the criteria for authorship but are not listed. I further confirm that the order of authors listed in the manuscript has been approved by all of us. We understand that the Corresponding Author is the sole contact for the Editorial process and is responsible for communicating with the other authors about progress, submissions of revisions, and final approval of proofs.

Conflict of interest

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. The authors did not have any competing interests in this research.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onder, I., Esen, H., Secer, A. et al. Stochastic optical solitons of the perturbed nonlinear Schrödinger equation with Kerr law via Ito calculus. Eur. Phys. J. Plus 138, 872 (2023). https://doi.org/10.1140/epjp/s13360-023-04497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04497-x

Navigation