Log in

Wave–wave interaction of an extended evolution equation with complete Coriolis parameters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An extended evolution equation is studied by means of Hirota bilinear method in this article, and it is gained from local Cartesian coordinate system of the basic equation group by applying scaling analysis and perturbation expansions. Firstly, the equation is transformed into Hirota form by variable transformation. Secondly, based on Hirota equation, we obtained the soliton, breather, rogue wave and interaction solutions of the equation. At last, figures of these solutions and the interaction of wave–wave are showed by choosing appropriate parameters. The effects of the horizontal Coriolis parameter on the soliton, breather, rogue wave, interaction solutions are conducted. We believe that the results have significant impaction in ocean dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Zhang, L. Yang, Theoretical analysis of equatorial near-inertial solitary waves under complete Coriolis parameters. Acta. Oceanol. Sin. 40, 54 (2021)

    Article  Google Scholar 

  2. R.H. Pletcher, J.C. Tannehill, D.A. Anderson, Computational fluid mechanics and heat transfer (CRC press, 2012)

  3. P. Muggli, S.F. Martins, J. Vieira et al., Interaction of ultra relativistic e- e+ fireball beam with plasma. New. J. Phys. 22, 013030 (2020)

    Article  Google Scholar 

  4. P.F. Han, T. Bao, Hybrid localized wave solutions for a generalized Calogero–Bogoyavlenskii–Konopelchenko–Schiff system in a fluid or plasma. Nonlinear Dyn. 108, 2513 (2022)

    Article  Google Scholar 

  5. Y.Y. Li, H.X. Jia, D.W. Zuo, Multi-soliton solutions and interaction for a (2+1)-dimensional nonlinear Schrödinger equation. Optik 241, 167019 (2021)

    Article  ADS  Google Scholar 

  6. B. Kaltenbacher, Mathematics of nonlinear acoustics. Evol. Equ. Control. The. 4, 447 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Luo, Q. Zhou, T. **, Numerical simulation of nonlinear phenomena in a standing-wave thermoacoustic engine with gas-liquid coupling oscillation. Appl Therm. Eng. 207, 118131 (2022)

    Article  Google Scholar 

  8. X.M. Tan Zhaqilao, Three wave mixing effect in the (2+1)-dimensional Ito equation. Int. J. Comput. Math. 98, 1921 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Zhao Zhaqilao, The abundant mixed solutions of (2+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Nonlinear Dyn. 103, 1055 (2021)

    Article  MATH  Google Scholar 

  10. Y.F. Yue, Y. Chen, Dynamics of localized waves in a (3 + 1)-dimensional nonlinear evolution equation. Mod. Phys. Lett. B. 33, 1950101 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. Y. Shen, B. Tian, T.Y. Zhou, In nonlinear optics, fluid dynamics and plasma physics: symbolic computation on a (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff system. Eur. Phys. J. Plus. 136, 5 (2021)

    Article  Google Scholar 

  12. Y. Shen, B. Tian S.H. Liu, T.Y. Zhou, Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+ 1)-dimensional shallow water wave equation with time-dependent coefficients. Nonlinear Dyn. 108, 2447 (2022)

  13. L.L. Huang, Y.F. Yue, Y. Chen, Localized waves and interaction solutions to a (3+1)-dimensional generalized KP equation. Comput. Math. Appl. 76, 831 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Y.F. Yue, L.L. Huang, Y. Chen, N-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation. Comput. Math. Appl. 75, 2538 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y.Y. Feng, Sudao Bilige, Multi-breather, multi-lump and hybrid solutions to a novel KP-like equation. Nonlinear Dyn. 106, 879 (2021)

    Article  Google Scholar 

  16. D. Zhao, Zhaqilao, Three-wave interactions in a more general (2+1)-dimensional Boussinesq equation. Eur. Phys. J. Plus. 135, 617 (2020)

    Article  Google Scholar 

  17. A. Yusuf, T.A. Sulaiman, M. Inc, M. Bayram, Breather wave, lump-periodic solutions and some other interaction phenomena to the caudrey–dodd–gibbon equation. Eur. Phys. J. Plus. 135, 7 (2020)

    Article  Google Scholar 

  18. J.G. Liu, W.H. Zhu, L. Zhou, Multi-wave, breather wave, and interaction solutions of the Hirota–Satsuma–Ito equation. Eur. Phys. J. Plus. 135, 1 (2020)

    Article  Google Scholar 

  19. X. Zhao, B. Tian, X.X. Du, C.C. Hu, S.H. Liu, Bilinear bcklund transformation, kink and breather-wave solutions for a generalized (2+1)-dimensional hirota–satsuma–ito equation in fluid mechanics. Eur. Phys. J. Plus. 136, 2 (2021)

    Article  ADS  Google Scholar 

  20. Z. Zhao, J. Yue, L. He, New type of multiple lump and rogue wave solutions of the (2+1)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili equation. Appl. Math. Lett. 133, 108294 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. J.G. Liu, W.H. Zhu, Y. He, Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients. Z. Angew. Math. Phys. 72, 1 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. P.Y. Alexis, G.R. Kol, Breather solitons and rogue waves supported by thermally induced self-trap** in a one-dimensional microcavity system. Eur. Phys. J. Plus. 137, 670 (2022)

    Article  Google Scholar 

  23. X.M. Wang, P.F. Li, Breathers and solitons for the coupled nonlinear Schrödinger system in three-spine α-helical protein. Chin. Phys. B. 30, 100509 (2021)

    Article  ADS  Google Scholar 

  24. Zhaqilao, A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems. Comput. Math. Appl. 75, 3331 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Hu, X. Li, Nonlocal symmetry and interaction solutions for the new (3+1)-dimensional integrable Boussinesq equation. Math. Model. Nat. Pheno. 17, 10 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Shen, Y. Yang, Bäcklund transformation and exact solutions to a generalized (3+1)-dimensional nonlinear evolution equation. Discrete Dyn. Nat. Soc. 2022, 5598381 (2022)

    Article  MATH  Google Scholar 

  27. J.W. Wu, Y.J. Cai, J. Lin, Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+ 1)-dimensional generalized Kadomtsev–Petviashvili equation. Chin. Phys. B. 31, 030201 (2022)

    Article  ADS  Google Scholar 

  28. N. Cao, X.J. Yin, S.T. Bai, L.Y. Xu, Breather wave, lump type and interaction solutions for a high dimensional evolution model. Chaos Solitons Fract. 172, 113505 (2023)

    Article  MathSciNet  Google Scholar 

  29. N. Cao, X.J. Yin, S.T. Bai, L.Y. Xu, A governing equation of Rossby waves and its dynamics evolution by Bilinear neural network method. Phys. Scripta. 98, 065222 (2023)

    Article  ADS  Google Scholar 

  30. D. Zhao Zhaqilao, on two new types of modified short pulse equation. Nonlinear Dyn. 100, 615 (2020)

    Article  MATH  Google Scholar 

  31. L. Kaur, A.M. Wazwaz, Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation. Int. J. Numer. Method H. 29, 569 (2018)

    Article  Google Scholar 

  32. K.H. Yin, X.P. Cheng, J. Lin, Soliton molecule and breather-soliton molecule structures for a general sixth-order nonlinear equation. Chin. Phys. Lett. 38, 080201 (2021)

    Article  ADS  Google Scholar 

  33. M.H. Huang, One-, two- and three-soliton, periodic and cross-kink solutions to the (2+1)-D variable-coefficient KP equation. Mod. Phys. Lett. B. 34, 2050045 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  34. P.F. Han, Taogetusang, Lump-type, breather and interaction solutions to the (3+1)-dimensional generalized KdV-type equation. Mod. Phys. Lett. B. 34, 2050329 (2020)

    Article  ADS  Google Scholar 

  35. X. Lü, S.J. Chen, Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103, 947 (2021)

    Article  MATH  Google Scholar 

  36. M.J. Ablowitz, P.A. Clarkson, Solitons (Cambridge University Press, Cambridge, Nonlinear Evolution Equations and Inverse Scattering, 1991)

    MATH  Google Scholar 

  37. G.X. Wang, X.B. Wang, B. Han, Inverse scattering of nonlocal Sasa-Satsuma equations and their multi soliton solutions. Eur. Phys. J. Plus. 137, 3 (2022)

    Google Scholar 

  38. Y. Li, S.F. Tian, Inverse scattering transform and soliton solutions of an integrable nonlocal Hirota equation. Commun. Pur. Appl. Anal. 21, 293 (2022)

    MathSciNet  MATH  Google Scholar 

  39. H. Ma, S. Yue, A. Deng, D’Alembert wave, the Hirota conditions and soliton molecule of a new generalized KdV equation. J. Geom. Phys. 172, 104413 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Arshed, N. Raza, A.R. Butt et al., Multiple rational rogue waves for higher dimensional nonlinear evolution equations via symbolic computation approach. J. Ocean. Eng. Sci. 8(1), 33 (2021)

    Article  Google Scholar 

  41. T.A. Mesquita, Symbolic approach to 2-orthogonal polynomial solutions of a third order differential equation. Math. Comput. Sci. 16(1), 6 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Jafari, N. Kadkhoda, D. Baleanu, Fractional lie group method of the time-fractional boussinesq equation. Nonlinear Dyn. 81(3), 1569 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Jadaun, Soliton solutions of a (3+1)-dimensional nonlinear evolution equation for modeling the dynamics of ocean waves. Phys. Scr. 96, 095204 (2021)

    Article  ADS  Google Scholar 

  44. M.B. Abd-El-Malek, A.M. Amin, New exact solutions for solving the initial-value-problem of the KdV–KP equation via the Lie group method. Appl. Math. Comput. 261, 408 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. X. Wang, C. Liu, L. Wang, Darboux transformation and rogue wave solutions for the variable-coefficients coupled Hirota equations. J. Math. Anal. Appl. 449, 1534 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. B.Q. Li, Y.L. Ma, Extended generalized darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation. Appl. Math. Comput. 386, 125469 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. D.Y. Yang, B. Tian, M. Wang et al., Lax pair, Darboux transformation, breathers and rogue waves of an N-coupled nonautonomous nonlinear Schrödinger system for an optical fiber or a plasma. Nonlinear Dyn. 107, 2657 (2022)

    Article  Google Scholar 

  48. X.J. He, X. Lü, M.G. Li, Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation. Anal. Math. Phys. 11, 1 (2021)

    Article  ADS  MATH  Google Scholar 

  49. S.J. Chen, X. Lü, W.X. Ma, Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. Commun. Nonlinear. Sci. 83, 105135 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Biao, Y. Chen, H.Q. Zhang, Auto- Bäcklund transformation and exact solutions for compound KdV-type and compound KdV–Burgers-type equations with nonlinear terms of any order. Phys. Lett. A. 305, 377 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Zhaqilao, Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation. Phys. Lett. A. 377, 3021 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Our article is supported by the National Natural Science Foundation of China (12262025). The Natural Science Foundation of Inner Mongolia Autonomous Region (2022QN01003). The Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT23099 and NMGIRT2208). Inner Mongolia Autonomous Region University research Project (NJZY23116). The Program for improving the Scientific Research Ability of Youth Teachers of Inner Mongolia Agricultural University (BR220126). Basic scientific research funds of universities directly under the Inner Mongolia Autonomous Region (22BR0902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoJun Yin.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or other organizations that can inappropriately influence our work.

Data Availability Statement

Data availability is not applicable to this article as no new data were created or analyzed in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, N., Yin, X., Xu, L. et al. Wave–wave interaction of an extended evolution equation with complete Coriolis parameters. Eur. Phys. J. Plus 138, 708 (2023). https://doi.org/10.1140/epjp/s13360-023-04288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04288-4

Navigation