Log in

Propagation of velocity profile of unsteady magnetohydrodynamics flow between two orthogonal moving porous discs

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The impact of laminar, incompressible, two-dimensional magnetohydrodynamics flow influenced by a magnetic field between two orthogonal moving porous plates has been investigated. The governing model is modified using the similarity transformation to turn it into an ordinary differential equation nonlinear problem. Earlier this problem has been dealt via various numerical techniques, while we have developed analytical solution using extended direct algebraic approach. Furthermore, the obtained equation is utilized to compute the different forms of velocity profile, while the influence of Hartmann number on fluid flow and heat transmission is also examined. It is observed that Hartmann number causes to accelerate or de-accelerate the fluid movement. Moreover, for larger values of Hartmann number the velocity shows the decreasing trends, while it depicts the increasing behavior for lower Hartmann values. The parabolic behavior has been observed by making a plot between Hartmann number and solution in which the other parametric values are assigned some fix value. It portrays the relationship between Hartmann and velocity of the fluid flow, which could be beneficial in several important phenomena such as accelerators, heat exchanger architecture, reactor cooling, droplets and high static electricity filtersand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availibility

Data sharing was not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. D.D. Joseph, L.N. Tao, Lubrication of porous bearing stokes solution, J. Appl. Mech. pp 753–760 (1966)

  2. J.J. O’Connor, J. Boyd, E.A. Avallone, Standard Handbook of Lubrication Engineering (McGraw-Hill, New York, 1968)

    Google Scholar 

  3. H. Darcy, The Flow of Fluids Through Porous Media (McGraw Hill Book Co, New York, 1937)

    Google Scholar 

  4. H.C. Brinkman, A calculation of viscous force exerted by a flow in fluid on a dense swarm of particles. Appl. Sci. Res. A. 1, 27–36 (1947)

    Article  MATH  Google Scholar 

  5. A.C. Srivastava, B.R. Sharma, The flow and heat transfer of a porous medium of finite thickness. J. Math. Phys. Sci. 26(6), 539–547 (1992)

    MATH  Google Scholar 

  6. S. Rosenblat, Torsional oscillation of a plate in a viscous fluid. J. Fluid. Mech. 6(2), 206–220 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. S. Rosenblat, Flow between torsional oscillating disks. J. Fluid Mech. 8(3), 388–399 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A.C. Srivastava, Torsional oscillations of an infinite plate in second order fluids. J. Fluid. Mech. 17(2), 171–181 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A.C. Srivastava, Flow in a porous medium induced by torsional oscillation of a disk near its surface. ZAMP. Z. Angew. Math. Phys. 50, 529–545 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. J.C. Umavathi, D.G. Prakasha, Y.M. Alanazi, M.M.A. Lashin, F.S. Al-Mubaddel, R. Kumar, R.J.P. Gowda, Magnetohydrodynamic squeezing Casson nanofluid flow between parallel convectively heated disks. Int. J. Mod. Phys. B. 37(4), 2350031 (2023)

    Article  ADS  Google Scholar 

  11. K. Sarada, R.J.P. Gowda, I.E. Sarris, R.N. Kumar, B.C. Prasannakumara, Effect of magnetohydrodynamics on heat transfer behaviour of a non-Newtonian fluid flow over a stretching sheet under local thermal non-equilibrium condition. Fluids 6, 264 (2021)

    Article  ADS  Google Scholar 

  12. L. Benos, I.E. Sarris, Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. Int. J. Heat. Mass. Trans. 130, 862–873 (2019)

    Article  Google Scholar 

  13. K.E. Aslani, I.E. Sarris, Effect of micromagnetorotation on magnetohydrodynamic Poiseuille micropolar flow: analytical solutions and stability analysis. J. Fluid. Mech. 920(25), 1–26 (2021)

    MathSciNet  MATH  Google Scholar 

  14. L.T. Benos, I.E. Sarris, The interfacial nanolayer role on magnetohydrodynamic natural convection of an Al\(_{2}\text{ O}_{3}\) water nanofluid. Heat. Trans. Eng. 42(2), 89–105 (2021)

    Article  ADS  Google Scholar 

  15. T. Katukani, Hydromagnetic flow due to a rotating disk. J. Phys. Soc. Jpn. 28, 1496–1506 (1962)

    ADS  MATH  Google Scholar 

  16. E.M. Sparrow, R.D. Cess, Magnetohydrodynamics flow and heat transfer about a rotating disk. J. Appl. Mech. Trans. ASME. 29, 181–187 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. W.F. Hughes, R.A. Elco, Magnetohydrodynamics lubrication flow between parallel rotating disks. J. Fluid. Mech. 13(1), 21–32 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  18. A.R. Rao, P.R. Rao, On the magnetohydrodynamic flow between eccentrically rotating disks. Int. J. Eng. Sci. 21(4), 359–372 (1983)

    Article  MATH  Google Scholar 

  19. T. Watanabe, T. Oyama, Magnetohydrodynamic boundary layer flow over a rotating disk. ZAMM. Z. Angew. Math. Mech. 71, 522–524 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. S.K. Kumar, W.I. Thacker, L.T. Watson, Magnetohydrodynamic flow and heat transfer about a rotating disk with suction and injection at the disk surface. Comput. Fluids. 16, 183–193 (1988)

    Article  ADS  MATH  Google Scholar 

  21. P.D. Ariel, On computation of MHD flow near a rotating disk. ZAMM. Z. Angew. Math. Mech. 82, 235–246 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. P.K. Sharma, S. Khan, MHD flow in porous medium induced by torsionally oscillating disk. Comput. Fluids. 39, 1255–1260 (2010)

    Article  MATH  Google Scholar 

  23. S.A. Rizvi, Magnetohydrodynamic flow over a single disc. Appl. Sci. Res. 10, 662–669 (1962)

    Google Scholar 

  24. M.R. Mohyuddin, Unsteady MHD flow due to eccentric rotating disks for suction and blowing. Turk. J. Phys. 31(3), 123–135 (2007)

    Google Scholar 

  25. G.N. Purohit, P. Bansal, MHD flow between a rotating and a stationary naturally permeable porous discs. Ganita Sandesh 9, 55–64 (1995)

    MATH  Google Scholar 

  26. D.D. Ganji, M. Abbasi, J. Rahimi, M. Gholami, I. Rahimipetroudi, On the MHD squeeze flow between two parallel disks with suction or injection via HAM and HPM. Fron. Mech. Eng. 9(3), 270–280 (2014)

    Article  Google Scholar 

  27. T. Hayat, M. Khan, Homotopy solutions for a generalized second-grade fluid past a porous plate. Non-Lin. Dyn. 42, 395–405 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Domairry, A. Aziz, Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method. Math. Prob. Eng. 2009, 603916 (2009)

    Article  MATH  Google Scholar 

  29. A. Nazir, T. Mahmood, Analysis of flow and heat transfer of viscous fluid between contracting rotating disks. Appl. Math. Modell. 35(7), 3154–3165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Ohki, Unsteady flow in a porous, elastic, circular tube. Bull. JSME. 23(179), 679–686 (1980)

    Article  Google Scholar 

  31. J.T. Barron, J. Majdalani, W.K. Ven Moorhem, A novel investigation of the oscillatory field over a transpiring surface. J. Soun. Vibr. 235(2), 281–297 (2000)

    Article  ADS  Google Scholar 

  32. J. Majdalani, C. Zhou, C.A. Dawson, Two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability. J. Biomech. 35, 1399–1403 (2002)

    Article  Google Scholar 

  33. J. Majdalani, C. Zhou, Moderate to large injection and suction driven channel flows with expanding or contracting walls. ZAAM. Z. Angew. Math. Mech. 83(3), 181–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. E.C. Dauenhauer, J. Majdalani, Exact self-similarity solution of the Navier-Stokes equations for a porous channel with orthogonally moving walls. Phys. Fluid. 15(6), 1485–1495 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. S. Dinarvand, M.M. Rashidi, A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in a rectangular domain bounded by two moving porous walls. Non-Lin. Anal. Real. World. Appl. 11(3), 1502–1512 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. X.H. Si, L.C. Zheng, X.X. Zhang, Y. Chao, The flow of a micropolar fluid through a porous channel with expanding or contracting walls. Cent. Eur. J. Phys. 9(3), 825–834 (2011)

    Google Scholar 

  37. X.H. Si, L.C. Zheng, X.X. Zhang, X.Y. Si, Flow of micropolar fluid between two orthogonally moving porous disks. Appl. Math. Mech. Engl. Ed. 33(8), 963–974 (2012)

    Article  MathSciNet  Google Scholar 

  38. H. Xu, Z.L. Lin, S.J. Liao, J.Z. Wu, J. Majdalani, Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonally moving walls. Phys. Fluids. 22, 053601 (2010)

    Article  ADS  MATH  Google Scholar 

  39. M. Ghaffar, M. Ali, A. Yasmin, M. Ashraf, Unsteady flow between two orthogonally moving porous disks. J. Mech. 31(2), 147–151 (2015)

    Article  Google Scholar 

  40. K.A. Khan, A.R. Butt, N. Raza, K. Maqbool, Unsteady magneto hydrodynamics flow between two orthogonal moving porous plates. Eur. Phys. J. Plus. 134(1), 1–16 (2019)

    Article  Google Scholar 

  41. R.N. Kumar, F. Gamaoun, A. Abdulrahman, J.S. Chohan, R.J.P. Gowda, Heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles: A comparative study. Int. J. Mode. Phys. B. 36(25), 2250170 (2022)

    Article  ADS  Google Scholar 

  42. K. Sarada, F. Gamaoun, A. Abdulrahman, S.O. Paramesh, R. Kumar, G.D. Prasanna, R.J.P. Gowda, Impact of exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux model. Case. Stud. Therm. Eng. 38, 102332 (2022)

    Article  Google Scholar 

  43. M.D. Alsulami, R.N. Kumar, R.J.P. Gowda, B.C. Prasannakumara, Analysis of heat transfer using Local thermal non-equilibrium conditions for a non-Newtonian fluid flow containing \(\text{ Ti}_{6}\text{ Al}_{4}\)V and AA7075 nanoparticles in a porous media, ZAMML. (2022)

  44. H. Rezazadeh, New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. Optik. Inter. J. Light. Elect. Opt. 167, 218–227 (2018)

    Article  Google Scholar 

  45. A. Jhangeer, M. Munawar, A. Pervaiz, F. Ibraheem, New general extended direct algebraic approach for optical solitons of Biswas-Arshed equation through birefringent fibers, Optik. Inter. J. Light. Elec. Opt. 228(3), 165790 (2021)

    Google Scholar 

  46. S. Uchida, H. Aoki, Unsteady flows in a semi-infinite contracting or expanding pipe. J. Fluid. Mech. 82, 371–387 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. E.C. Dauenhauer, J. Majdalani, Exact self-similarity solution of the Navier-Stokes equations for a porous channel with orthogonally moving walls. Phys. Fluids 15, 1485–1495 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. A. Jhangeer, A.R. Seadawy, F. Ali, A. Ahmed, New complex waves of perturbed Schrodinger equation with Kerr law nonlinearity and Kundu-Mukherjee-Naskar equation. Results Phys. 16, 102816 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Jhangeer.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamal, T., Jhangeer, A. & Hussain, M.Z. Propagation of velocity profile of unsteady magnetohydrodynamics flow between two orthogonal moving porous discs. Eur. Phys. J. Plus 138, 403 (2023). https://doi.org/10.1140/epjp/s13360-023-04019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04019-9

Navigation