Log in

Study of multiplicity dependence in Charmed Hadrons production in pp collisions at LHC energies

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We report the analysis by performing the fitting on the experimental \(p_T\) spectra of heavy flavour hadrons, including prompt \(D^0\), \(D_s^+\), and \(\Lambda _c^+\) hadrons, in proton-proton collisions at \(\sqrt{s}\) = 13 TeV at midrapidity (\(|y| < 0.5\)), using the thermodynamically consistent Tsallis distribution function. The data for the fitting is taken from the ALICE experiment at LHC. The quality of the Tsallis fits with fixed \(\mu\)=0 chemical potential has proved to be significantly better than those with fitted \(\mu\) value. The extracted nonextensivity parameter q values for \(D^0\) and \(D_s^+\) mesons proved to be compatible with those obtained earlier for the charged pions and kaons in high-energy proton-proton collisions. The extracted q values for \(\Lambda _c^+\) baryons are found to be compatible with those obtained earlier for the protons and antiprotons in high-energy proton-proton collisions. We have confirmed the relation \(q(mesons) > q(baryons)\) for heavy flavor hadrons, obtained for light hadrons in high-energy pp collisions. The effective Tsallis temperature for the heavy flavor hadrons increases with multiplicity in proton-proton collisions at \(\sqrt{s}\) = 13 TeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statements

This manuscript has associated data in a data repository [Author’s comment: All data included in this manuscript are available upon request by contacting the corresponding author.]

References

  1. J. Adams et al., (STAR Collaboration) Nucl. Phys. A 757, 102 (2005)

  2. K. Adcox et al., (STAR Collaboration) Nucl. Phys. A 757, 184 (2005)

  3. M. Gyulassy et al., Nucl. Phys. A 750, 30 (2005)

    Article  ADS  Google Scholar 

  4. Rapp, R., and van Hees, H. (2008). The physics of Quarks: new research. ar**v:0803.0901

  5. B. Abelev et al., ALICE Collaboration. Phys. Rev. C 90, 034904 (2014)

  6. X.N. Wang, Phys. Lett. B 579, 299 (2004)

    Article  ADS  Google Scholar 

  7. T. Hirano, Y. Nara, Phys. Rev. C 69, 034908 (2004)

    Article  ADS  Google Scholar 

  8. R.J. Fries, V. Greco, P. Sorensen, Ann. Rev. Nucl. Part. Sci. 58, 177 (2008)

    Article  ADS  Google Scholar 

  9. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  10. C. Tsallis, Eur. Phys. J. A 40, 257 (2009)

    Article  ADS  Google Scholar 

  11. J. Cleymans, D.J. Worku, Phys. G 39, 025006 (2012)

    Article  ADS  Google Scholar 

  12. I. Sena, A. Deppman, Eur. Phys. J. A 49, 17 (2013)

    Article  ADS  Google Scholar 

  13. PHENIX Collaboration, Phys. Rev. D, 83, 052004 (2011)

  14. P.K. Khandai, P. Sett, P. Shukla, V. Singh, Int. J. Mod. Phys. A 28, 1350066 (2013)

    Article  ADS  Google Scholar 

  15. C.Y. Wong, G. Wilk, Acta Phys. Polon. B 43, 2047 (2012)

    Article  Google Scholar 

  16. J. Cleymans, G. Lykasov, A. Parvan, A. Sorin, O. Teryaev, D.S. Worku, Phys. Lett. B 723, 351 (2013)

    Article  ADS  Google Scholar 

  17. J. Cleymans, J. Phys. Conf. Ser. 779, 012079 (2017)

    Article  Google Scholar 

  18. Zheng H, Zhu L, Adv. High Energy Phys., 9632126 (2016)

  19. LHCb Collaboration, R. Aaij et al., JHEP, 03, 159 (2016)

  20. G. Biró, G.G. Barnaföldi, T.S. Biró, K.ürmössy, ar**v:1608.0143

  21. H. Zheng, L. Zhu, Adv. High Energy Physics, 9632126 (2016)

  22. Y.-Q. Gao, F.-H. Liu, Indian J. Phys. 90, 319 (2016)

    Article  ADS  Google Scholar 

  23. H. Zheng, L. Zhu, Adv. High Energy Phys., (2015)

  24. H. Zheng, L. Zhu, A. Bonasera, Phys. Rev. D 92, 074009 (2015)

    Article  ADS  Google Scholar 

  25. G. Wilk, Z. Wlodarczyk, Entropy 17, 384 (2015)

    Article  ADS  Google Scholar 

  26. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Eur. Phys. J. C 41, 199–212 (2005)

    Article  ADS  Google Scholar 

  27. B.A. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Eur. Phys. J. C 72, 2082 (2012)

    Article  ADS  Google Scholar 

  28. M. Cacciari, M. Greco, P. Nason, JHEP 05, 007 (1998)

    Article  ADS  Google Scholar 

  29. M. Cacciari et al., JHEP 10, 137 (2012)

    Article  ADS  Google Scholar 

  30. A. Andronic et al., Eur. Phys. J. C 76(3), 107 (2016)

    Article  ADS  Google Scholar 

  31. C.M.S. Collaboration, V. Khachatryan et al., Phys. Lett. B 771, 435–456 (2017)

    Article  ADS  Google Scholar 

  32. LHCb Collaboration, R. Aaij et al., JHEP, 12, 026 (2017)

  33. ALICE Collaboration, Phys. Lett. B, 829, 137065 (2022)

  34. J. Cleymans and M.W. Paradza, ar**v:2010.05565v1 [hep-ph] 12 Oct (2020)

  35. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  36. T. S. Biro, G. Purcsel and K. Urmossy, ar**v:0812.2104v2 [hep-ph]

  37. G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000)

    Article  ADS  Google Scholar 

  38. R. Hagedorn, Riv. Nuovo Cimento 6, 1 (1984)

    Google Scholar 

  39. R. Blankenbecler, S.J. Brodsky, Phys. Rev. D 10, 2973 (1974)

    Article  ADS  Google Scholar 

  40. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)

    Article  ADS  Google Scholar 

  41. Khusniddin K. Olimov, Fu.-Hu. Liu, Kobil Musaev, Maratbek Shodmonov, Universe 8, 174 (2022)

    Article  ADS  Google Scholar 

  42. K. Khusniddin,Olimov, et al., Int. J. Modern Phys. A 36(20), 2150149 (2021)

Download references

Acknowledgements

I would like to forward my thanks to COMSATS university Islamabad Campus, Islamabad, Pakistan to provide us potential educational and research platform. Also, I would like to acknowledge our collaborator Khusniddin K. Olimov for his continuous support while finalizing and writing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Tabassam.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabassam, U., Ali, Y. & Olimov, K.K. Study of multiplicity dependence in Charmed Hadrons production in pp collisions at LHC energies. Eur. Phys. J. Plus 138, 367 (2023). https://doi.org/10.1140/epjp/s13360-023-03976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03976-5

Navigation