Log in

Azimuthal dependence of electromagnetically induced grating in a double V-type atomic system near a plasmonic nanostructure

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We conduct theoretical and numerical studies of the performance of a 2D electromagnetically induced grating in a 4-level quantum system, which is situated near a plasmonic nanostucture. The plasmonic nanostructure is built by metal-coated dielectric nanospheres in a periodic 2D arrangement. The double V-type system is coupled by a weak probe laser, a spatially-dependent standing wave field and a Laguerre–Gaussian field. The plasmonic metamaterial causes quantum interference in the spontaneous emission from the two closely situated upper states, which makes the amplitude and phase modulations of the weak probe light dependent on the azimuthal angle and the orbital angular momentum of the vortex coupling beam. In the absence of the plasmonic nanostructure this behavior does not exist due to the lack of quantum interference. We demonstrate that by adjusting the parameters of the vortex beam, as well as the distance to the plasmonic nanostructure, the amplitude and phase modulations of the probe laser, and the Fraunhofer diffraction patterns of the grating can be controlled, directing the weak probe light energy to high-orders. The spatially dependent coupling light causes the Fraunhofer diffraction to have an asymmetric patterns when a negative or a positive value of the winding number is applied. Our work proposes a straightforward scheme for manipulation of the diffraction efficiency of the grating by utilizing both the winding number of the Laguerre–Gaussian beam, and the distance between the quantum system and the plasmonic nanostructure as control knobs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting the corresponding author.]

References

  1. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  2. M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Photodetection with active optical antennas. Science 332(6030), 702–704 (2011)

    Article  ADS  Google Scholar 

  3. N. Liu, M.L. Tang, M. Hentschel, H. Giessen, A.P. Alivisatos, Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011)

    Article  ADS  Google Scholar 

  4. D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297(5584), 1160–1163 (2002)

    Article  ADS  Google Scholar 

  5. K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Ann. Rev. Phys. Chem. 58, 267–297 (2007)

    Article  ADS  Google Scholar 

  6. E.R. Corson, E.B. Creel, R. Kostecki, B.D. McCloskey, J.J. Urban, Important considerations in plasmon-anhanced electrochemical conversion at voltage-biased electrodes. iScience, 23, 100911-1–100911-10 (2020)

  7. W. Ou, B. Zhou, J. Shen, Ch. Zhao, Y.Y. Li, J. Lu, Plasmonic metal nanostructures: concepts, challenges and opportunities in photo-mediated chemical transformations. iScience 24, 101982-1–101982-17 (2021)

  8. S. Evangelou, V. Yannopapas, E. Paspalakis, Transparency and slow light in a four-level quantum system near a plasmonic nanostructure. Phys. Rev. A 86, 053811-1–053811-9 (2012)

    Article  ADS  Google Scholar 

  9. L. Wang, Y. Gu, H. Chen, J.-Y. Zhang, Y. Cui, B.D. Gerardot, Q. Gong, Polarized linewidth-controllable double-trap** electromagnetically induced transparency spectra in a resonant plasmon nanocavity. Sci. Rep. 3, 2879-1–2879-7 (2013)

  10. J.D. Cox, M.R. Singh, C. von Bilderling, A.V. Bragas, A nonlinear switching mechanism in quantum dot and metallic nanoparticle hybrid systems. Adv. Opt. Mater. 1(6), 460–467 (2013)

    Article  Google Scholar 

  11. M.R. Singh, Enhancement of the second-harmonic generation in a quantum dot-metallic nanoparticle hybrid system. Nanotechnology 24(12), 125701 (2013)

    Article  ADS  Google Scholar 

  12. M.A. Antón, F. Carreño, S. Melle, O.G. Calderón, E. Cabrera-Granado, M.R. Singh, Optical pum** of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle. Phys. Rev. B 87, 195303-1–195303-13 (2013)

  13. E. Paspalakis, S. Evangelou, A.F. Terzis, Control of excitonic population inversion in a coupled semiconductor quantum dot-metal nanoparticle system. Phys. Rev. B 87, 235302-1–235302-6 (2013)

    Article  ADS  Google Scholar 

  14. E. Paspalakis, S. Evangelou, V. Yannopapas, A.F. Terzis, Phase-dependent optical effects in a four-level quantum system near a plasmonic nanostructure. Phys. Rev. A 88, 053832-1–0538322-8 (2013)

    Article  ADS  Google Scholar 

  15. D. Bortman-Arbiv, A.D. Wilson-Gordon, H. Friedmann, Phase control of group velocity: from subluminal to superluminal light propagation. Phys. Rev. A 63, 043818-1–0438182-7 (2001)

    Article  ADS  Google Scholar 

  16. J.-H. Wu, J.-Y. Ga, Phase control of light amplification without inversion in a \(\Lambda\) system with spontaneously generated coherence. Phys. Rev. A 65, 063807-1–063807-5 (2002)

    Article  ADS  Google Scholar 

  17. W.-H. Xu, J.-H. Wu, J.-Y. Gao, Effects of spontaneously generated coherence on transient process in a \(\Lambda\) system. Phys. Rev. A 66, 063812-1–063812-6 (2002)

    Article  ADS  Google Scholar 

  18. H.-Y. Ling, Y.-Q. Li, M. **ao, Electromagnetically induced grating: homogeneously broadened medium. Phys. Rev. A 57(2), 1338–1344 (1998)

    Article  ADS  Google Scholar 

  19. M. Mitsunaga, N. Imoto, Observation of an electromagnetically induced grating in cold sodium atoms. Phys. Rev. A 59(6), 4773–4776 (1999)

    Article  ADS  Google Scholar 

  20. G.C. Cardoso, J.W.R. Tabosa, Electromagnetically induced gratings in a degenerate open two-level system. Phys. Rev. A 65, 033803-1–033803-7 (2002)

    Article  ADS  Google Scholar 

  21. S.E. Harris, J.E. Field, A. Imamoĝlu, Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64(10), 1107–1110 (1990)

    Article  ADS  Google Scholar 

  22. M. Fleischhauer, A. Imamoĝlu, J.P. Marangos, Electromagnetically induced transparency. Rev. Mod. Phys. 77, 633–637 (2005)

    Article  ADS  Google Scholar 

  23. D. Moretti, D. Felinto, J. Tabosa, A. Lezama, Dynamics of a stored Zeeman coherence grating in an external magnetic field. J. Phys. B At., Mol. Opt. Phys. 43, 115502-1–115502-7 (2010)

  24. A.W. Brown, M. **ao, All-optical switching and routing based on an electromagnetically induced absorption grating. Opt. Lett. 30(7), 699–701 (2005)

    Article  ADS  Google Scholar 

  25. L. Zhao, W. Duan, S.F. Yelin, All-optical beam control with high speed using image-induced blazed gratings in coherent media. Phys. Rev. A 82, 013809-1–013809-8 (2010)

    Article  ADS  Google Scholar 

  26. P.W. Zhai, X.M. Su, J.Y. Gao, Optical bistability in electromagnetically induced grating. Phys. Lett. A 289, 27–33 (2001)

    Article  ADS  Google Scholar 

  27. F. Wen, W. Wang, I. Ahmed, H. Wang, Y. Zhang, Y. Zhang, A.R. Mahesar, M. **ao, Two-dimensional Talbot self-imaging via electromagnetically induced lattice. Sci. Rep. 7, 41790-1–41790-9 (2017)

    ADS  Google Scholar 

  28. Y. Zhang, Ch. Yuan, Y. Zhang, H. Zheng, H. Chen, Ch. Li, Zh. Wang, M. **ao, Surface solitons of four-wave mixing in an electromagnetically induced lattice. Laser Phys. Lett. 10, 055406-1–055406-5 (2013)

    Article  ADS  Google Scholar 

  29. S. Franke-Arnold, J. Leach, M.J. Padgett, V.E. Lembessis, D. Ellinas, A.J. Wright, J.M. Girkin, P. Öhberg, A.S. Arnold, Optical ferris wheel for ultracold atoms. Opt. Express 15(14), 8619–8625 (2007)

    Article  ADS  Google Scholar 

  30. X. He, P. Xu, J. Wang, M. Zhan, Rotating single atoms in a ring lattice generated by a spatial light modulator. Opt. Express 17(23), 21007–21014 (2009)

    Article  ADS  Google Scholar 

  31. L. Wang, F. Zhou, P. Hu, Y. Niu, Sh. Gong, Two-dimensional electromagnetically induced cross-grating in a four-level tripod-type atomic system. J. Phys. B At. Mol. Opt. Phys. 47(22), 013838-1–013838-7 (2014)

  32. T. Naseri, R. Sadighi-Bonabi, Electromagnetically induced phase grating via population trap** condition in a microwave-driven four-level atomic system. J. Opt. Soc. Am. B 31, 2879–2884 (2014)

    Article  ADS  Google Scholar 

  33. S.H. Asadpour, H.R. Hamedi, T. Kirova, E. Paspalakis, Two-dimensional electromagnetically induced phase grating via composite vortex light. Phys. Rev. A 105, 043709-1–043709-11 (2022)

    Article  ADS  Google Scholar 

  34. D.L. Andrews, M. Babiker, The Angular Momentum of Light (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  35. G. Molina-Terriza, J.P. Torres, L. Torner, Twisted photons. Nat. Phys. 3, 305–310 (2007)

    Article  Google Scholar 

  36. J. Wang, Advances in communications using optical vortices. Photon. Res. 5, B14–B28 (2016)

    Article  Google Scholar 

  37. H.R. Hamedi, J. Ruseckas, E.Paspalakis, G. Juzeliūnas, Transfer of optical vortices in coherently prepared media. Phys. Rev. A 99(3), 053822-1–053822-5 (2019)

  38. H.R. Hamedi, E. Paspalakis, G. Zlabys, G. Juzeliūnas, J. Ruseckas, Complete energy conversion between light beams carrying orbital angular momentum using coherent population trap** for a coherently driven double-Lambda atom-light-coupling scheme. Phys. Rev. A 100, 023811-1–023811-8 (2019)

    Article  ADS  Google Scholar 

  39. Z. Dutton, J. Ruostekoski, Transfer and storage of vortex States in light and matter waves. Phys. Rev. Lett. 93, 193602-1–193602-4 (2004)

    Article  ADS  Google Scholar 

  40. J. Ruseckas, G. Juzeliūnas, P. Öhberg, Polarization rotation of slow light with orbital angular momentum in ultracoldatomic gases. Phys. Rev. A 76, 053822-1–053822-5 (2007)

    Article  ADS  Google Scholar 

  41. S.H. Asadpour, A. Panahpour, M. Jafari, Phase-dependent electromagnetically induced grating in a four-level quantum system near a plasmonic nanostructure. Eur. Phys. J. Plus, 133, 411-1–411-7 (2018)

  42. H.R. Hamedi, V. Yannopapas, E. Paspalakis, Spatially structured optical effects in a four-Level quantum system near a plasmonic nanostructure. Ann. Phys. 533, 2100117 (2021)

    Article  MathSciNet  Google Scholar 

  43. V. Yannopapas, E. Paspalakis, N.V. Vitanov, Plasmon-induced enhancement of quantum interference near metallic nanostructures. Phys. Rev. Lett. 103, 063602-1–063602-4 (2009)

    Article  ADS  Google Scholar 

  44. S. Evangelou, V. Yannopapas, E. Paspalakis, Modifying free-space spontaneous emission near a plasmonic nanostructure. Phys. Rev. A 83, 023819-1–023819-7 (2011)

    Article  ADS  Google Scholar 

  45. S. Evangelou, V. Yannopapas, E. Paspalakis, Simulating quantum interference in spontaneous decay near plasmonic nanostructures: population dynamics. Phys. Rev. A 83, 055805-1–0558059-4 (2011)

    Article  ADS  Google Scholar 

  46. H. Yan, K.-Y. Liao, J.-F. Li, Y.-X. Du, Zh.-M. Zhang, Sh.-L. Zhu, Bichromatic electromagnetically induced transparency in hot atomic vapors. Phys. Rev. A 87, 055401-1–055401-5 (2013)

    Article  ADS  Google Scholar 

  47. S.H. Asadpour, T. Kirova, J. Qia, H.R. Hamedi, G. Juzeliūnas, E. Paspalakis, Azimuthal modulation of electromagnetically induced grating using structured light. Sci. Rep. 11, 20721-1–20721-11 (2021)

    Article  ADS  Google Scholar 

  48. Y. Gu, L. Wang, P. Ren, J.-X. Zhang, T.-C. Zhang, O.J.F. Martin, Q.-H. Gong, Surface-plasmon-induced modification on the spontaneous emission spectrum via subwavelength-confined anisotropic purcell factor. Nano Lett. 12, 2488–2493 (2012)

    Article  ADS  Google Scholar 

  49. M. Sukharev, S.A. Malinovskaya, Stimulated Raman adiabatic passage as a route to achieving optical control in plasmonics. Phys. Rev. A 86, 043406-1–043406-7 (2012)

    Article  ADS  Google Scholar 

  50. A.A. Hashim, Polymer Thin Films (IntechOpen, London, 2010)

    Google Scholar 

Download references

Funding

This work was supported by a STSM Grant from COST Action CA16221 for T. Kirova and H. R. Hamedi. T. Kirova received support from the Grant No. LV-LT-TW/2022/4 “Coherent Optical Control of Atomic Systems” by the Ministry of Education and Science of the Republic of Latvia. H. R. Hamedi acknowledges support from the Grant No. S-LLT-22-2 “Coherent Optical Control of Atomic Systems” by the Lithuanian Council of Research.

Author information

Authors and Affiliations

Authors

Contributions

EP and HRH generated the idea and designed the theoretical methods. SHA performed the numerical investigations. The results were interpreted by VY and EP. TK prepared the manuscript for publication. All authors contributed to editing the manuscript.

Corresponding author

Correspondence to Teodora Kirova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadpour, S.H., Kirova, T., Hamedi, H.R. et al. Azimuthal dependence of electromagnetically induced grating in a double V-type atomic system near a plasmonic nanostructure. Eur. Phys. J. Plus 138, 246 (2023). https://doi.org/10.1140/epjp/s13360-023-03871-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03871-z

Navigation