Log in

Structural, magnetic and magnetocaloric properties in La0.67(Sr1−xMgx)0.33MnO3 (x = 0, 0.1, 0.3) compounds

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The La0.67(Sr1−xMgx)0.33MnO3 (x = 0, 0.1, 0.3) manganites have been prepared by sol–gel method, and the effect of Mg do** on their structure, magnetic and magnetocaloric properties has been researched. All the samples are crystallized in perovskite rhombohedral structure with space group \(R\overline{3}c\). The slight increases in the edge length a and the cell volume with Mg do** indicates the replacement of Mg in Mn-site. The corresponding change of structure parameters, such as Mn–O bond length and Mn–O–Mn bond angle, weakens the exchange coupling between Mn3+ and Mn4+ and results in the decrease in the Curie temperature (TC). With increasing content of Mg, the local inhomogeneity and Griffiths-like phase evolve and induce the deviation of critical exponents from the mean-field model. The existence of these short-range ferromagnetic clusters broadens the temperature range of magnetic transition process, then depresses the magnetic entropy change (|ΔSM|) and flattens the |ΔSM|-T curve. The La0.67(Sr0.7Mg0.3)0.33MnO3 possesses a table-like magnetocaloric effect near room temperature (|ΔSM| is nearly constant of 0.51 ± 0.01 J kg−1 K−1 for field change of 1 T in the temperature range of 277 ~ 302 K), which is beneficial for the Ericsson cycle magnetic refrigerator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. M. Balli, S. Jandl, P. Fournier, A. Kedous-Lebouc, Appl. Phys. Rev. 4, 021305 (2017)

    Article  ADS  Google Scholar 

  2. L.W. Li, M. Yan, J. Alloy. Compd. 823, 153810 (2020)

    Article  Google Scholar 

  3. A. Kitanovski, Adv. Energy Mater. 10, 1903741 (2020)

    Article  Google Scholar 

  4. V. Franco, J.S. Blazquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramirez, A. Conde, Prog. Mater. Sci. 93, 112–232 (2018)

    Article  Google Scholar 

  5. T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch, Adv. Energy Mater. 9, 1901322 (2019)

    Article  Google Scholar 

  6. V. Franco, A. Conde, V.K. Pecharsky, K.A. Gschneidner Jr., Europhys. Lett. 79, 47009 (2007)

    Article  ADS  Google Scholar 

  7. M.A. Hamad, J. Adv. Ceram. 1, 290–295 (2012)

    Article  Google Scholar 

  8. M.A. Hamad, J. Adv. Ceram. 4, 206–210 (2015)

    Article  Google Scholar 

  9. J. Lyubina, U. Hannemann, M.P. Ryan, L.F. Cohen, Adv. Mater. 24, 2042–2046 (2012)

    Article  Google Scholar 

  10. J.A. Turcaud, K. Morrison, A. Berenov, N.M. Alford, K.G. Sandeman, L.F. Cohen, Scr. Mater. 68, 510–513 (2013)

    Article  Google Scholar 

  11. A. Nasri, S. Zouari, M. Ellouze, E.K. Hlil, F. Elhalouani, Eur. Phys. J. Plus 129, 180 (2014)

    Article  Google Scholar 

  12. H. Zhang, Y. Wang, H.O. Wang, D.X. Huo, W.S. Tan, J. Appl. Phys. 131, 043901 (2022)

    Article  ADS  Google Scholar 

  13. M.H. Ehsani, T. Raoufi, A. Javadiyan, J. Supercond. Nov. Magn. 31, 3723–3732 (2018)

    Article  Google Scholar 

  14. A. Sakka, R. Mnassri, S. Tarhouni, W. Cheikhrouhou-Koubaa, N. Chniba-Boudjada, M. Oumezzine, A. Cheikhrouhou, Eur. Phys. J. Plus 134, 216 (2019)

    Article  Google Scholar 

  15. G.F. Wang, L.R. Li, Z.R. Zhao, X.Q. Yu, X.F. Zhang, Ceram. Int. 40, 16449–16454 (2014)

    Article  Google Scholar 

  16. G.F. Wang, Z.R. Zhao, D.L. Wang, X.F. Zhang, IEEE. Trans. Magn. 51, 2502704 (2015)

    Google Scholar 

  17. B. Arun, V.R. Akshay, M. Vasundhara, Dalton Trans. 47, 15512–15522 (2018)

    Article  Google Scholar 

  18. A.H. El-Sayed, O.M. Hemeda, M.A. Hamad, A.M. Mohamed, Eur. Phys. J. Plus 134, 227 (2019)

    Article  Google Scholar 

  19. W.J. Lu, X. Luo, C.Y. Hao, W.H. Song, Y.P. Sun, J. Appl. Phys. 104, 113908 (2008)

    Article  ADS  Google Scholar 

  20. J. Mira, J. Rivas, L.E. Hueso, F. Rivadulla, M.A. López Quintela, J. Appl. Phys. 91, 8903 (2002)

    Article  ADS  Google Scholar 

  21. L.A. Han, H. Qiao, F. Gao, H.Z. Zhu, J. Yang, T. Zhang, J. Mater. Sci. Mater. Electron 30, 5421–5429 (2019)

    Article  Google Scholar 

  22. Y. Zhou, X.D. Zhu, S.L. Li, Ceram. Int. 43, 3679–3687 (2017)

    Article  Google Scholar 

  23. V. Markovich, A. Wisniewski, H. Szymczak, in Handbook of magnetic materials. ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2014), pp.1–201

    Google Scholar 

  24. P. Kameli, H. Salamati, A. Heidarian, H. Bahrami, J. Non-Cryst, Solids 355, 917–921 (2009)

    Google Scholar 

  25. J. Blasco, J. García, G. Subías, M.C. Sánchez, Phys. Rev. B 70, 094426 (2004)

    Article  ADS  Google Scholar 

  26. J.R. Gomez, R.F. Garcia, A.D. Catoira, M.R. Gomez, Renew Sustain. Energ. Rev. 17, 74–82 (2013)

    Article  Google Scholar 

  27. L.E. Hueso, P. Sande, D.R. Miguéns, J. Rivas, F. Rivadulla, M.A. López-Quintela, J. Appl. Phys. 91, 9943 (2002)

    Article  ADS  Google Scholar 

  28. V. Dyakonov, A. Slawska-Waniewska, N. Nedelko, E. Zubov, V. Mikhaylov, K. Piotrowski, A. Szytula, S. Baran, W. Bazela, Z. Kravchenko, P. Aleshkevich, A. Pashchenko, K. Dyakonov, V. Varyukhin, H. Szymczak, J. Magn. Magn. Mater. 322, 3072–3079 (2010)

    Article  ADS  Google Scholar 

  29. W. Tang, W.J. Lu, X. Luo, B.S. Wang, X.B. Zhu, W.H. Song, Z.R. Yang, Y.P. Sun, Phys. B Condens. Matter 405, 2733–2741 (2010)

    Article  ADS  Google Scholar 

  30. M.H. Ehsani, P. Kameli, M.E. Ghazi, F.S. Razavi, M. Taheri, J. Appl. Phys. 114, 223907 (2013)

    Article  ADS  Google Scholar 

  31. V.S. Kolat, U. Esturk, T. Izgi, H. Gencer, S. Atalay, J. Alloy. Compd. 628, 1–8 (2015)

    Article  Google Scholar 

  32. T. Hashimoto, T. Numasawa, M. Shino, T. Okada, Cryogenics 21, 647–653 (1981)

    Article  ADS  Google Scholar 

  33. J.G. Speight, Lange’s handbook of chemistry, 17th edn. (McGraw-Hill Education, Columbus, 2005), pp.167–172

    Google Scholar 

  34. K. Laajimi, M. Khlifi, E.K. Hlil, M.H. Gazzah, M. Ben Ayed, H. Belmabrouk, J. Dhahri, J. Mater. Sci. Mater. Electron 31, 15322–15335 (2020)

    Article  Google Scholar 

  35. P. Zhang, H. Yang, S. Zhang, H. Ge, S. Hua, Phy. B Condens. Matter 410, 1–4 (2013)

    Article  ADS  Google Scholar 

  36. P.T. Phong, L.V. Bau, L.C. Hoan, D.H. Manh, N.X. Phuc, I.J. Lee, J. Alloy Compd. 645, 243–249 (2015)

    Article  Google Scholar 

  37. P.T. Phong, D.H. Manh, L.C. Hoan, T.V. Ngai, N.X. Phuc, I. Lee, J. Alloy Compd. 662, 557–565 (2016)

    Article  Google Scholar 

  38. B.K. Banerjee, Phys. Lett. 12, 16–17 (1964)

    Article  ADS  Google Scholar 

  39. V. Franco, J.S. Blazquez, B. Ingale, A. Conde, Annu. Rev. Mater. Res. 42, 305–342 (2012)

    Article  ADS  Google Scholar 

  40. A. Arrott, Phys. Rev. 108, 1394–1396 (1957)

    Article  ADS  Google Scholar 

  41. A. Arrott, J.E. Noakes, Phys. Rev. Lett. 19, 786–789 (1967)

    Article  ADS  Google Scholar 

  42. M. Nasri, M. Triki, E. Dhahri, E.K. Hlil, J. Alloy. Compd. 546, 84–91 (2013)

    Article  Google Scholar 

  43. T. Raoufi, M.H. Ehsani, D.S. Khoshnoud, Ceram. Int. 43, 5204–5215 (2017)

    Article  Google Scholar 

  44. A. Ben Jazia Kharrat, E.K. Hlil, W. Boujelben, J. Alloy Compd. 739, 101–113 (2018)

    Article  Google Scholar 

  45. S. Bouzidi, M. Dhahri, J. Dhahri, E.K. Hlil, Eur. Phys. J. Plus 136, 23 (2021)

    Article  Google Scholar 

  46. J.S. Kouvel, M.E. Fisher, Phys. Rev. 136, A1626–A1632 (1964)

    Article  ADS  Google Scholar 

  47. G.F. Wang, Z.R. Zhao, H.L. Li, X.F. Zhang, Ceram. Int. 42, 18196–18203 (2016)

    Article  Google Scholar 

  48. M. Hazzez, N. Ihzaz, M. Boudard, M. Oumezzine, Phys. B Condens. Matter 468–469, 39–44 (2015)

    Article  ADS  Google Scholar 

  49. P. Nisha, S. Savitha Pillai, M.R. Varma, K.G. Suresh, Solid State Sci. 14, 40–47 (2012)

    Article  ADS  Google Scholar 

  50. G.J. Kumar, A. Jose, E.P. **u, T.T. Saravanan, E.S. Kumar, M. Navaneethan, H. Sreemoolanadhan, K.K. Bharathi, J. Phys. D Appl. Phys. 55, 215001 (2022)

    Article  ADS  Google Scholar 

  51. N. Assoudi, M. Smari, I. Walha, E. Dhahri, S. Shevyrtalov, O. Dikaya, V. Rodionova, Chem. Phys. Lett. 706, 182–188 (2018)

    Article  ADS  Google Scholar 

  52. G.L. Liu, D.Q. Zhao, H.Y. Bai, W.H. Wang, M.X. Pan, J. Phys. D Appl. Phys. 49, 055004 (2016)

    Article  ADS  Google Scholar 

  53. H.Y. Zhang, Z.Y. Zhang, Y.F. Xu, A.L. **a, W.H. Li, F.C. Wang, S.S. Chen, G. Siso, Rare Met. 41, 246–253 (2022)

    Article  Google Scholar 

  54. N. Yigiter, M. Pektas, V.S. Kolat, T. Izgi, N. Bayri, H. Gencer, S. Atalay, J. Mater. Sci. Mater. Electron 33, 4721–4735 (2022)

    Article  Google Scholar 

  55. P. Kameli, H. Salamati, A. Aezami, J. Alloy. Compd. 450, 7–11 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 51772004 and 51872006), the Anhui Natural Science Foundation (2008085QE279) and the Innovation and Entrepreneurship Training Program for College Students of Anhui University of Technology (Grant No. S202210360179). J.L. also acknowledges the Young Talents and PhD start-up Fund Project from Anhui Jianzhu University (2018QD52).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiyan Zhang or Ailin **a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, Y., Tan, J. et al. Structural, magnetic and magnetocaloric properties in La0.67(Sr1−xMgx)0.33MnO3 (x = 0, 0.1, 0.3) compounds. Eur. Phys. J. Plus 137, 1335 (2022). https://doi.org/10.1140/epjp/s13360-022-03522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03522-9

Navigation