Log in

A numerical study of a moving boundary problem with variable thermal conductivity and temperature-dependent moving PCM under periodic boundary condition

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The work in this paper concerns the study of a one-phase moving boundary problem with size-dependent thermal conductivity and moving phase change material. We have considered a time-dependent boundary condition at the surface \(y=0\) and a temperature-dependent moving phase change material which later both assumed in periodic nature. A quadratic profile for temperature distribution is assumed to solve the problem numerically via heat balance integral method. In a particular case, we compared our results with exact solution and found to be closed. The effect of various parameters either on temperature profile or on tracking of melting front are also discussed in detail. The parameters physically interpret that transition process becomes fast for a higher value of Stefan number or/and Peclet number while there is a small delay in the propagation of melting interface for larger value of either amplitude of moving phase change material or amplitude of periodic boundary condition. Furthermore, we discuss a comparative study on temperature profile as well as on moving melting front in case of standard problem, moving boundary problem with constant thermal conductivity and presence of convection, and moving boundary problem with variable thermal conductivity and presence of convection and obtained result shows that the transition process is faster in case of moving boundary problem with constant thermal conductivity and presence of convection and is slower in case of moving boundary problem with variable thermal conductivity and presence of convection while it is between them in case of standard problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Chaurasiya, K.N. Rai, J. Singh, J. Singh, Ther. Sci. and Eng. Prog. 25, 101002 (2021)

    Article  Google Scholar 

  2. V. Chaurasiya, D. Kumar, K.N. Rai, J. Singh, J. Singh, Zeit. für Naturf. A. 77, 589 (2022)

    Article  Google Scholar 

  3. J. Crank, Free and Moving Boundary Problems (Clarendon Press, Oxford, 1984)

    MATH  Google Scholar 

  4. J.M. Hill, in One-Dimensional Stefan Problems: An Introduction (31, Longman Sc. & Tech., 1987)

  5. S.C. Gupta, in The Classical Stefan Problem: Basic Concepts, Modelling and Analysis with Quasi-Analytical Solutions and Methods (45, Elsevier, 2017)

  6. R. Kothari, S.K. Sahu, S.I. Kundalwal, Heat Mass Transf. 55, 769 (2019). https://doi.org/10.1007/s00231-018-2453-9

    Article  ADS  Google Scholar 

  7. S. Chandrasekaran, T. Basak, S. Ramanathan, J. Mater. Proc. Technol. 211, 482 (2011). https://doi.org/10.1016/j.jmatprotec.2010.11.001

    Article  Google Scholar 

  8. T. Basak, S. Roy, A. Singh, B.D. Pandey, Int. J. Heat Mass Transf. 52, 4413 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.057

    Article  Google Scholar 

  9. D. Ramakrishna, T. Basak, S. Roy, I. Pop, Int. J. Heat Mass Transf. 59, 206 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.076

    Article  Google Scholar 

  10. T. Basak, S. Roy, A.J. Chamkha, Int. Heat Mass Transf. 39, 657 (2012). https://doi.org/10.1016/j.icheatmasstransfer.2012.03.022

    Article  Google Scholar 

  11. D. Oliver, J. Sunderland, Int. J. Heat Mass Transf. 30, 2657 (1987). https://doi.org/10.1016/0017-9310(87)90147-5

    Article  ADS  Google Scholar 

  12. A. Kumar, A.K. Singh, J. Rajeev, King Saud Univ. Sci. 32, 97 (2020). https://doi.org/10.1016/j.jksus.2018.03.005

    Article  Google Scholar 

  13. A. Sellitto, D. Jou, V. Cimmelli, Acta Appl. Math. 122, 435 (2012). https://doi.org/10.1007/s10440-012-9754-7

    Article  Google Scholar 

  14. D. Jou, G. Lebon, J. Casas-Vazquez, Extended Irreversible Thermodynamics, 4th edn. (Springer, Berlin, 2010)

    Book  Google Scholar 

  15. F. Font, Appl. Math. Model. 63, 172 (2018). https://doi.org/10.1016/j.apm.2018.06.052

    Article  MathSciNet  Google Scholar 

  16. M. Calvo-Schwarzwälder, Appl. Math. Model. 76, 513 (2019). https://doi.org/10.1016/j.apm.2019.06.008

    Article  MathSciNet  Google Scholar 

  17. A.N. Ceretani, N.N. Salva, D.A. Tarzia, Nonlinear Anal. Real World Appl. 40, 243 (2018). https://doi.org/10.1016/j.nonrwa.2017.09.002

    Article  MathSciNet  Google Scholar 

  18. B. Wu, S.W. McCue, P. Tillman, J.M. Hill, Appl. Math. Model. 33, 2349 (2009). https://doi.org/10.1016/j.apm.2008.07.009

    Article  MathSciNet  Google Scholar 

  19. F. Font, T. Myers, J. Nanopart. Res. 15(12), 2086 (2013)

    Article  ADS  Google Scholar 

  20. F. Font, T.G. Myers, S.L. Mitchell, Microfludis Nanofluids 18, 233 (2015). https://doi.org/10.1007/s10404-014-1423-x

    Article  Google Scholar 

  21. J.M. Back, S.W. McCue, T.J. Moroney, Sci. Rep. 4, 7066 (2014). https://doi.org/10.1038/srep07066

    Article  ADS  Google Scholar 

  22. F.I. Dragomirescu, K. Eisenschmidt, C. Rohde, B. Weigand, Int. J. Ther. Sci. 104, 386 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.01.019

    Article  Google Scholar 

  23. X. Weiqing, SIAM J. Math. Anal. 21, 362 (1990). https://doi.org/10.1137/0521020

    Article  MathSciNet  Google Scholar 

  24. J.D. Evans, J.R. King, J. Mech. Appl. Math. 53, 449 (2000). https://doi.org/10.1093/qjmam/53.3.449

    Article  Google Scholar 

  25. J.E. Sunderland, S.H. Cho, ASME J. Heat Transf. 96, 214 (1974). https://doi.org/10.1115/1.3450167

    Article  Google Scholar 

  26. F. Font, S. Mitchell, T. Myers, Int. J. Heat Mass Transf. 62, 411 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.070

    Article  Google Scholar 

  27. V. Chaurasiya, D. Kumar, K.N. Rai, J. Singh, Thermal Sci. Eng. Prog. (2020). https://doi.org/10.1016/j.tsep.2020.100664

    Article  Google Scholar 

  28. V. Chaurasiya, K.N. Rai, J. Singh, J. Anal. Calor. 147, 3229 (2022). https://doi.org/10.1007/s10973-021-10614-8

    Article  Google Scholar 

  29. M. Turkyilmazoglu, Int. J. Therm. Sci. 126, 67 (2018). https://doi.org/10.1016/j.ijthermalsci.2017.12.019

    Article  Google Scholar 

  30. K.N. Jitendra, J. Rai Singh, Int. Commun. Heat Mass Transf. 131, 105833 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105833

    Article  Google Scholar 

  31. A.R. Kumar, App. Math. Comput. 386, 125490 (2020). https://doi.org/10.1016/j.jksus.2018.09.009

    Article  Google Scholar 

  32. Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen, N. Li, G. Zhang, Phy. Rep. 860, 1 (2020). https://doi.org/10.1016/j.physrep.2020.03.001

    Article  ADS  Google Scholar 

  33. J. Bollati, A.C. Briozzo, Int. J. Non-Linear Mech. (2021). https://doi.org/10.1016/j.ijnonlinmec.2021.103732

    Article  Google Scholar 

  34. A.C. Briozzo, M.F. Natale, J. Appl. Anal. 21(2), 89 (2015)

    Article  MathSciNet  Google Scholar 

  35. X. Li, M. Xu, X. Jiang, Appl. Math. Comput. 208 (2009). https://doi.org/10.1016/j.amc.2008.12.023

  36. S.G. Ahmed, S.A. Meshrif, Comput. Math. Appl. 59, 1302 (2009). https://doi.org/10.1016/j.camwa.2009.03.115

    Article  Google Scholar 

  37. H. Ribera, T.G. Myers, M.M. MacDevette, Appl. Math. Comput. 354, 216 (2019). https://doi.org/10.1016/j.amc.2019.02.039

    Article  MathSciNet  Google Scholar 

  38. S.L. Mitchell, T.G. Myres, Soc. Ind. Appl. Maths. 52, 57 (2010). https://doi.org/10.1137/080733036

    Article  Google Scholar 

  39. S.L. Mitchell, T.G. Myers, Int. J. Heat Mass Transf. 53, 3540 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.015

    Article  Google Scholar 

  40. O.P. Layeni, J.V. Johnson, Appl. Math. Comput. 218, 7431 (2012). https://doi.org/10.1016/j.amc.2012.01.001

    Article  MathSciNet  Google Scholar 

  41. R.K. Chaudhary, K.N. Rai, J. Singh, Comput. Ther. Sci. An. Int. J. 12, 529 (2020). https://doi.org/10.1615/ComputThermalScien.2020031207

    Article  Google Scholar 

  42. J. Singh, K.N.R. Jitendra, Math. Comput. Simul. 178, 485 (2020). https://doi.org/10.1016/j.matcom.2020.06.020

    Article  MathSciNet  Google Scholar 

  43. R.K. Chaudhary, V. Chaurasiya, M.M. Awad, Eur. Phys. J. Plus 137, 120 (2022). https://doi.org/10.1140/epjp/s13360-021-02322-x

    Article  Google Scholar 

  44. R.K. Chaudhary, D. Kumar, K.N. Rai, J. Singh, Int. J. Biol. 14, 2150040 (2021). https://doi.org/10.1142/S1793524521500406

    Article  Google Scholar 

  45. T.R. Goodman, Adv. Heat Transf. 1, 51 (1964). https://doi.org/10.1016/S0065-2717(08)70097-2

    Article  Google Scholar 

  46. T.R. Goodman, J. J. Shea 27, 16 (1960). https://doi.org/10.1115/1.3643893

    Article  Google Scholar 

  47. A.S. Wood, Appl. Math. Model. 25, 815 (2001). https://doi.org/10.1016/S0307-904X(01)00016-6

    Article  Google Scholar 

  48. N. Rizwan-uddin, Heat Transf. Part A 35, 361 (1999). https://doi.org/10.1080/104077899275173

    Article  Google Scholar 

  49. I. Rizwan-uddin, J. Comput. Fluid Dyn. 11, 211 (1999). https://doi.org/10.1080/10618569908940875

    Article  Google Scholar 

  50. S. Savovic, J. Caldwell, Int. J. Heat Mass Transf. 46, 2911 (2003). https://doi.org/10.1016/S0017-9310(03)00050-4

    Article  Google Scholar 

  51. J. Caldwell, C.-C. Chan, Appl. Math. Model. 24, 45 (2000). https://doi.org/10.1016/S0307-904X(99)00031-1

    Article  Google Scholar 

  52. J. Caldwell, C.K. Chiu, Commun. Numer. Methods. Eng. 16, 569 (2000). https://doi.org/10.1002/1099-0887(200008)16:8<569::AID-CNM361>3.0.CO;2-3

    Article  Google Scholar 

Download references

Acknowledgements

Vikas Chaurasiya, one of the authors, is grateful to DST (INSPIRE), New Delhi, India, for the Senior Research Fellowship vide Ref. No. DST/INSPIRE/03/2017/000184 (i) Ref. no/Math/2017-18/March 18/347. Rajneesh Kumar Chaudhary, one of the authors, would like to thank the CSIR, New Delhi, India, for the financial support under the JRF (09/013(0931)/2020-EMR-I) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasiya, V., Chaudhary, R.K., Awad, M.M. et al. A numerical study of a moving boundary problem with variable thermal conductivity and temperature-dependent moving PCM under periodic boundary condition. Eur. Phys. J. Plus 137, 714 (2022). https://doi.org/10.1140/epjp/s13360-022-02927-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02927-w

Navigation