Log in

Path integral and winding number in singular magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study a system of identical particles in a singular magnetic field by path integral molecular dynamics. We analytically solve the problem for the energy spectrum of a single particle in a singular magnetic field and find good agreement with our numerical results. In particular, we develop the method to perform path integral molecular dynamics simulations for the many-body problem, where the recursion formula to calculate the winding number for identical bosons is given. It is expected that the algorithm developed here has a wide range of applications to cold atoms with artificial magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Author’s comment: The data that support the findings of this study are available from the corresponding author upon reasonable request. The code of this study is openly available in GitHub at https://github.com/xiongyunuo/PIMD-for-Singular-Magnetic-Field.]

References

  1. D.M. Ceperley, Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  2. M. Boninsegni, N.V. Prokofev, B.V. Svistunov, Worm algorithm and diagrammatic Monte Carlo: a new approach to continuous-space path integral Monte Carlo simulations. Phys. Rev. E 74, 036701 (2006)

    Article  ADS  Google Scholar 

  3. M. Boninsegni, N.V. Prokofev, B.V. Svistunov, Worm algorithm for continuous-space path integral Monte Carlo simulations. Phys. Rev. Lett. 96, 070601 (2006)

    Article  ADS  Google Scholar 

  4. S. Miura, S. Okazaki, Path integral molecular dynamics for Bose–Einstein and Fermi–Dirac statistics. J. Chem. Phys. 112, 10116 (2000)

    Article  ADS  Google Scholar 

  5. J. L. DuBois, E. W. Brown, B. J. Alder, Overcoming the fermion sign problem in homogeneous systems. ar**v:1409.3262 (2014)

  6. L. Walewski, H. Forbert, D. Marx, Reactive path integral quantum simulations of molecules solvated in superfluid helium. Comput. Phys. Commun. 185, 884 (2014)

    Article  ADS  Google Scholar 

  7. J. Runeson, M. Nava, M. Parrinello, Quantum symmetry from enhanced sampling methods. Phys. Rev. Lett. 121, 140602 (2018)

    Article  ADS  Google Scholar 

  8. B. Hirshberg, V. Rizzi, M. Parrinello, Path integral molecular dynamics for bosons. Proc. Natl. Acad. Sci. U. S. A. 116, 21445 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. B. Hirshberg, M. Invernizzi, M. Parrinello, Path integral molecular dynamics for fermions: alleviating the sign problem with the Bogoliubov inequality. J. Chem. Phys. 152, 171102 (2020)

    Article  ADS  Google Scholar 

  10. C.W. Myung, B. Hirshberg, M. Parrinello, Prediction of a supersolid phase in high-pressure deuterium. Phys. Rev. Lett. 128, 045301 (2022)

    Article  ADS  Google Scholar 

  11. Y.N. **ong, H.W. **ong, Path integral molecular dynamics simulations for Green’s function in a system of identical bosons. J. Chem. Phys. 156, 134112 (2022)

    Article  ADS  Google Scholar 

  12. Y. N. **ong, H. W. **ong, Numerical calculation of Green’s function and momentum distribution for spin-polarized fermions by path integral molecular dynamics. ar**v:2204.02401 (2022)

  13. K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  14. D.C. Tsui, H.L. Stormer, A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559 (1982)

    Article  ADS  Google Scholar 

  15. R.B. Laughlin, Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  16. Y.J. Lin, R.L. Compton, K. Jiménez-García, J.V. Porto, I.B. Spielman, Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628 (2009)

    Article  ADS  Google Scholar 

  17. V. Galitski, I. Spielman, G. Juzeliunas, Artificial gauge fields with ultracold atoms. Phys. Today 72, 38 (2019)

    Article  Google Scholar 

  18. J.M. Leinaas, J. Myrheim, On the theory of identical particles. Il Nuovo Cimento B. 37, 1 (1977)

    Article  ADS  Google Scholar 

  19. F. Wilczek, Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48, 1144 (1982)

    Article  ADS  Google Scholar 

  20. F. Wilczek, Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  21. F. Wilczek, Fractional Statistics and Anyon Superconductivity (World Scientific, Teaneck, 1990)

    Book  Google Scholar 

  22. A. Khare, Fractional Statistics and Quantum Theory (World Scientific, Singapore, 2005)

    Book  Google Scholar 

  23. H. Bartolomei et al., Fractional statistics in anyon collisions. Science 368, 173 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Nakamura, S. Fallahi, H. Sahasrabudhe, R. Rahman, S. Liang, G.C. Gardner, M.J. Manfra, Aharonov–Bohm interference of fractional quantum Hall edge modes. Nat. Phys. 15, 563 (2019)

    Article  Google Scholar 

  25. J. Nakamura, S. Liang, G.C. Gardner, M.J. Manfra, Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931 (2020)

    Article  Google Scholar 

  26. J.K. Jain, Composite fermion approach for fractional quantum Hall effect. Phys. Rev. Lett. 63, 199 (1989)

    Article  ADS  Google Scholar 

  27. J.K. Jain, Composite Fermions (Cambridge University Press, New York, 2007)

    Book  Google Scholar 

  28. J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics (Addison-Wesley, Pearson Education, 2011)

    MATH  Google Scholar 

  29. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (Dover Publications, New York, 2010)

    MATH  Google Scholar 

  30. H. Kleinert, Path integrals in quantum mechanics, statistics, polymer physics, and financial markets (World Scientific, Singapore, 2009)

    Book  Google Scholar 

  31. J. Hass, C. Heil, M. Weir, Thomas’ Calculus (Pearson, New York, 2018)

    Google Scholar 

  32. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  33. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  34. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  35. G.J. Martyna, M.L. Klein, M. Tuckerman, Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635 (1992)

    Article  ADS  Google Scholar 

  36. S. Jang, G.A. Voth, Simple reversible molecular dynamics algorithms for Nosé–Hoover chain dynamics. J. Chem. Phys. 107, 9514 (1997)

    Article  ADS  Google Scholar 

  37. M.E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford University, New York, 2010)

    MATH  Google Scholar 

  38. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  39. J. Myrherim. in Anyons edited by A. Comtet, T. Jolicoeur, S. Ouvry, and F. David (Springer, 1999), 69, pp. 265–413

Download references

Funding

The funding was provided by National Natural Science Foundation of China (Grant No. 11175246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei **ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, Y., **ong, H. Path integral and winding number in singular magnetic field. Eur. Phys. J. Plus 137, 550 (2022). https://doi.org/10.1140/epjp/s13360-022-02775-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02775-8

Navigation