Log in

Evaluation of mechanical properties of multilayer graphyne-based structures as anode materials for lithium-ions batteries

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Among various two-dimensional carbon allotropes, graphyne has received extensive research attention with outstanding physical features and excellent application prospects for energy storage systems, specifically lithium-ion batteries anode. The mechanical characteristic of the anode affects the performance and durability of the battery during charge/discharge cycles. Therefore, this research investigates the mechanical properties of \(\upalpha\)-, \(\upbeta \)-, and \(\upgamma \)-graphyne multilayer configurations using the molecular dynamics (MD) simulation approach. The results demonstrate that the mechanical properties of multilayer graphyne do not significantly depend on carbon layers; however, as the layer numbers increase, fracture stress and strain decrease approximately in both sheets with armchair and zigzag configurations, while armchair types are slightly more. In the fracture mechanism, brittle behavior is observed for both types, but the fracture occurs faster in the zigzag type because of the bond arrangement. Among multilayer graphyne-based structures, \({\upalpha}\)-graphyne owing to the maximum and \(\upgamma \)-graphyne due to the minimum percentages of acetylenic linkages, exhibit the lowest and the highest Young’s modulus, respectively. This behavior is also observed for fracture stresses. By increasing the layer numbers from one to four, Young’s modulus of multilayer configuration shows an increasing margin. After 5 layers, Young’s modulus is primarily independent of layer number because the two-dimensional structures evolve to three-dimensional configurations. The 10% strain is the allowable zone value for applying strain to multilayer structures to increase the ability to store the charge carriers. The multilayer anode configuration will yield and collapse for more than this value. The results of this paper introduce mechanical characteristics of multilayer graphyne-based sheets as promising candidates to design lithium-ion batteries anode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1(1), 35–53 (2018). https://doi.org/10.1007/s41918-018-0001-4

    Article  Google Scholar 

  2. M.V.F. Heinz, M.C. Bay, U.F. Vogt, C. Battaglia, Grain size effects on activation energy and conductivity: Na-β″-alumina ceramics and ion conductors with highly resistive grain boundary phases. Acta Mater. 213, 116940 (2021). https://doi.org/10.1016/j.actamat.2021.116940

    Article  Google Scholar 

  3. D. Ma, Y. Li, M. Wu, L. Deng, X. Ren, P. Zhang, Enhanced cycling stability of Li-rich nanotube cathodes by 3D graphene hierarchical architectures for Li-ion batteries. Acta Mater. 112, 11–19 (2016). https://doi.org/10.1016/j.actamat.2016.04.010

    Article  ADS  Google Scholar 

  4. N.S. Pavithra, G. Nagaraju, R. Viswanatha, Surfactant assisted sonochemical synthesis of zinc tungstate nanoparticles: Anode for Li-ion battery and photocatalytic activities. Eur. Phys. J. Plus 133(12), 1–9 (2018). https://doi.org/10.1140/epjp/i2018-12248-x

    Article  Google Scholar 

  5. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sour. 257, 421–443 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.103

    Article  ADS  Google Scholar 

  6. K. Persson et al., Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 1(8), 1176–1180 (2010). https://doi.org/10.1021/jz100188d

    Article  Google Scholar 

  7. N.A. Kaskhedikar, J. Maier, Lithium storage in carbon nanostructures. Adv. Mater. 21(25–26), 2664–2680 (2009). https://doi.org/10.1002/adma.200901079

    Article  Google Scholar 

  8. M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013). https://doi.org/10.1021/cr300263a

    Article  Google Scholar 

  9. M.D. Stoller, S. Park, Z. Yanwu, J. An, R.S. Ruoff, Graphene-Based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). https://doi.org/10.1021/nl802558y

    Article  ADS  Google Scholar 

  10. R. Mukherjee, A.V. Thomas, A. Krishnamurthy, N. Koratkar, Photothermally reduced graphene as high-power anodes for lithium-ion Batteries. ACS Nano 6(9), 7867–7878 (2012). https://doi.org/10.1021/nn303145j

    Article  Google Scholar 

  11. J. Pan et al., Layered-structure SbPO 4 /reduced graphene oxide: an advanced anode material for sodium ion batteries. ACS Nano 12(12), 12869–12878 (2018). https://doi.org/10.1021/acsnano.8b08065

    Article  Google Scholar 

  12. S. Ullah, P.A. Denis, F. Sato, Beryllium doped graphene as an efficient anode material for lithium-ion batteries with significantly huge capacity: a DFT study. Appl. Mater. Today 9, 333–340 (2017). https://doi.org/10.1016/j.apmt.2017.08.013

    Article  Google Scholar 

  13. P.R. Ilango, K. Prasanna, T. Subburaj, Y.N. Jo, C.W. Lee, Facile longitudinal unzip** of carbon nanotubes to graphene nanoribbons and their effects on LiMn2O4 cathodes in rechargeable lithium-ion batteries. Acta Mater. 100, 11–18 (2015). https://doi.org/10.1016/j.actamat.2015.08.021

    Article  ADS  Google Scholar 

  14. X. Gao, H. Liu, D. Wang, J. Zhang, Graphdiyne: synthesis, properties, and applications. Chem. Soc. Rev. 48(3), 908–936 (2019). https://doi.org/10.1039/c8cs00773j

    Article  Google Scholar 

  15. G. Abdi et al., Toward the synthesis, fluorination and application of N-graphyne. RSC Adv. 10(66), 40019–40029 (2020). https://doi.org/10.1039/d0ra08143d

    Article  ADS  Google Scholar 

  16. L. **ao et al., Electronic-structure tuning of honeycomb layered oxide cathodes for superior performance. Acta Mater. 199, 34–41 (2020). https://doi.org/10.1016/j.actamat.2020.08.015

    Article  ADS  Google Scholar 

  17. A.R. Puigdollers, G. Alonso, P. Gamallo, First-principles study of structural, elastic and electronic properties of α-, β- and γ-graphyne. Carbon 96(4), 879–887 (2016). https://doi.org/10.1016/j.carbon.2015.10.043

    Article  Google Scholar 

  18. Y. Mao, H. Soleymanabadi, Graphyne as an anode material for Mg-ion batteries: a computational study. J. Mol. Liq. 308, 113009 (2020). https://doi.org/10.1016/j.molliq.2020.113009

    Article  Google Scholar 

  19. Q. Zhang, C. Tang, W. Zhu, C. Cheng, Strain-enhanced Li storage and diffusion on the graphyne as the anode material in the Li-ion battery. J. Phys. Chem. C 122(40), 22838–22848 (2018). https://doi.org/10.1021/acs.jpcc.8b05272

    Article  Google Scholar 

  20. M. Makaremi, B. Mortazavi, C.V. Singh, Carbon ene-yne graphyne monolayer as an outstanding anode material for Li/Na ion batteries. Appl. Mater. Today 10, 115–121 (2018). https://doi.org/10.1016/j.apmt.2017.12.008

    Article  Google Scholar 

  21. Y.Y. Zhang, Q.X. Pei, Y.W. Mai, Y.T. Gu, Temperature and strain-rate dependent fracture strength of graphynes. J. Phys. D. Appl. Phys. 47(42), 425301 (2014). https://doi.org/10.1088/0022-3727/47/42/425301

    Article  Google Scholar 

  22. Y.Y. Zhang, Q.X. Pei, C.M. Wang, Mechanical properties of graphynes under tension: a molecular dynamics study. Appl. Phys. Lett. 101(8), 81909 (2012). https://doi.org/10.1063/1.4747719

    Article  Google Scholar 

  23. J. Qu, H. Zhang, J. Li, S. Zhao, T. Chang, Structure-dependent mechanical properties of extended beta-graphyne. Carbon 120, 350–357 (2017). https://doi.org/10.1016/j.carbon.2017.05.051

    Article  Google Scholar 

  24. Z. Xu, X. Lv, J. Li, J. Chen, Q. Liu, A promising anode material for sodium-ion battery with high capacity and high diffusion ability: graphyne and graphdiyne. RSC Adv. 6(30), 25594–25600 (2016). https://doi.org/10.1039/c6ra01870j

    Article  ADS  Google Scholar 

  25. H.J. Hwang, J. Koo, M. Park, N. Park, Y. Kwon, H. Lee, Multilayer graphynes for lithium ion battery anode. J. Phys. Chem. C 117(14), 6919–6923 (2013). https://doi.org/10.1021/jp3105198

    Article  Google Scholar 

  26. L. Wang, S. Yin, C. Zhang, Y. Huan, J. Xu, Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries. J. Power Sour. 392, 265–273 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.007

    Article  ADS  Google Scholar 

  27. S. Alavi, Molecular simulations: fundamentals and practice (Wiley, Canada, 2020)

    Book  Google Scholar 

  28. H. Ghasemi, A. Rajabpour, A novel approach to calculate thermal expansion of graphene: molecular dynamics study. Eur. Phys. J. Plus 132(5), 1–5 (2017). https://doi.org/10.1140/epjp/i2017-11491-y

    Article  Google Scholar 

  29. B. Azizi, S. Rezaee, M.J. Hadianfard, K.H. Dehnou, A comprehensive study on the mechanical properties and failure mechanisms of graphyne nanotubes (GNTs) in different phases. Comput. Mater. Sci. 182, 109794 (2020). https://doi.org/10.1016/j.commatsci.2020.109794

    Article  Google Scholar 

  30. F. Mehralian, R.D. Firouz-Abadi, A. Vahid Moshtagh, Elastic properties of vertically aligned carbon nanotubes: a molecular dynamics study. Eur. Phys. J. Plus 134(10), 544 (2019). https://doi.org/10.1140/epjp/i2019-12903-8

    Article  Google Scholar 

  31. R. Klessig, E. Polak, Efficient implementations of the Polak-Ribière conjugate gradient algorithm. SIAM J. Control 10(3), 524–549 (1972). https://doi.org/10.1137/0310040

    Article  MathSciNet  MATH  Google Scholar 

  32. J.M. Ducéré, C. Lepetit, R. Chauvin, Carbo -graphite: structural, mechanical, and electronic properties. J. Phys. Chem. C 117(42), 21671–21681 (2013). https://doi.org/10.1021/jp4067795

    Article  Google Scholar 

  33. J. Yeo, G.S. Jung, F.J. Martín-Martínez, J. Beem, Z. Qin, M.J. Buehler, Multiscale design of graphyne-based materials for high-performance separation membranes. Adv. Mater. 31(42), 1805665 (2019). https://doi.org/10.1002/adma.201805665

    Article  Google Scholar 

  34. X. Deng, M. Si, J. Dai, Communication: oscillated band gaps of B/N-codoped α-graphyne. J. Chem. Phys. 137(20), 201101 (2012). https://doi.org/10.1063/1.4769354

    Article  ADS  Google Scholar 

  35. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer grapheme. Science 313(5789), 951–954 (2006). https://doi.org/10.1126/science.1130681

    Article  ADS  Google Scholar 

  36. J. Yun et al., Tunable band gap of graphyne-based homo- and hetero-structures by stacking sequences, strain and electric field. Phys. Chem. Chem. Phys. 20(42), 26934–26946 (2018). https://doi.org/10.1039/c8cp03533d

    Article  Google Scholar 

  37. A. León, M. Pacheco, Electronic properties of β-graphyne bilayers. Chem. Phys. Lett. 620, 67–72 (2015). https://doi.org/10.1016/j.cplett.2014.12.038

    Article  ADS  Google Scholar 

  38. Y. Hang, W.Z. Wu, J. Yu, W.L. Guo, Tuning the energy gap of bilayer α-graphyne by applying strain and electric field. Chin. Phys. B 25(2), 23102 (2015). https://doi.org/10.1088/1674-1056/25/2/023102

    Article  Google Scholar 

  39. J.L. Zhang, G.C. Shan, Stacking control in graphene-based materials: a promising method for fascinating physical properties. Front. Phys. 14(2), 23301 (2019). https://doi.org/10.1007/s11467-018-0871-2

    Article  ADS  Google Scholar 

  40. B. Bhattacharya, U. Sarkar, N. Seriani, Electronic properties of homo- and heterobilayer graphyne: the idea of a nanocapacitor. J. Phys. Chem. C 120(47), 26579–26587 (2016). https://doi.org/10.1021/acs.jpcc.6b07092

    Article  Google Scholar 

  41. R. Majidi, A. Karami, Electronic properties of bilayer and trilayer graphyne in the presence of electric field. Struct. Chem. 25(3), 853–858 (2014). https://doi.org/10.1007/s11224-013-0350-x

    Article  Google Scholar 

  42. H. Shin, J. Kim, H. Lee, O. Heinonen, A. Benali, Y. Kwon, Nature of interlayer binding and stacking of sp-sp2 hybridized carbon layers: a quantum monte carlo study. J. Chem. Theory Comput. 13(11), 5639–5646 (2017). https://doi.org/10.1021/acs.jctc.7b00747

    Article  Google Scholar 

  43. T.C. O’Connor, J. Andzelm, M.O. Robbins, AIREBO-M: a reactive model for hydrocarbons at extreme pressures. J. Chem. Phys. 142(2), 24903 (2015). https://doi.org/10.1063/1.4905549

    Article  Google Scholar 

  44. G. Lei, Y. Zhang, H. Liu, F. Song, Mechanical properties of hollow and water-filled graphyne nanotube and carbon nanotube hybrid structure. Nanotechnology 29(19), 195702 (2018). https://doi.org/10.1088/1361-6528/aab075

    Article  ADS  Google Scholar 

  45. M. Li, Y. Zhang, Y. Jiang, Y. Zhang, Y. Wang, H. Zhou, Mechanical properties of γ-graphyne nanotubes. RSC Adv. 8(28), 15659–15666 (2018). https://doi.org/10.1039/c8ra01970c

    Article  ADS  Google Scholar 

  46. B. Faria, N. Silvestre, J.N.C. Lopes, Strength and fracture of graphyne and graphdiyne nanotubes. Comput. Mater. Sci. 171, 109233 (2020). https://doi.org/10.1016/j.commatsci.2019.109233

    Article  Google Scholar 

  47. M. Kohestanian, Z. Sohbatzadeh, S. Rezaee, Mechanical properties of continuous fiber composites of cubic silicon carbide (3C-SiC) / different types of carbon nanotubes (SWCNTs, RSWCNTs, and MWCNTs): a molecular dynamics simulation. Mater. Today Commun. 23, 100922 (2020). https://doi.org/10.1016/j.mtcomm.2020.100922

    Article  Google Scholar 

  48. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  MATH  Google Scholar 

  49. H. Rafii-Tabar, Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations. Phys. Rep. 325(6), 239–310 (2000). https://doi.org/10.1016/S0370-1573(99)00087-3

    Article  ADS  Google Scholar 

  50. S.W. Cranford, M.J. Buehler, Mechanical properties of graphyne. Carbon 49(13), 4111–4121 (2011). https://doi.org/10.1016/j.carbon.2011.05.024

    Article  Google Scholar 

  51. D.H. Tsai, The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys. 70(3), 1375–1382 (1979). https://doi.org/10.1063/1.437577

    Article  ADS  Google Scholar 

  52. J.A. Zimmerman, E.B. Webb, J.J. Hoyt, R.E. Jones, P.A. Klein, D.J. Bammann, Calculation of stress in atomistic simulation. Model. Simul. Mater. Sci. Eng. 12(4), S319–S332 (2004). https://doi.org/10.1088/0965-0393/12/4/S03

    Article  ADS  Google Scholar 

  53. Y.Y. Zhang, Y.T. Gu, Mechanical properties of graphene: effects of layer number, temperature and isotope. Comput. Mater. Sci. 71, 197–200 (2013). https://doi.org/10.1016/j.commatsci.2013.01.032

    Article  ADS  Google Scholar 

  54. X. Zhang, Z. Zhang, S. Yao, A. Chen, X. Zhao, Z. Zhou, An effective method to screen sodium-based layered materials for sodium ion batteries. npj Comput. Mater. 4(1), 1–6 (2018). https://doi.org/10.1038/s41524-018-0070-2

    Article  ADS  Google Scholar 

  55. P. Roy, S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3(6), 2454–2484 (2015). https://doi.org/10.1039/c4ta04980b

    Article  Google Scholar 

  56. W. Zhou, Effects of external mechanical loading on stress generation during lithiation in Li-ion battery electrodes. Electrochim. Acta 185, 28–33 (2015). https://doi.org/10.1016/j.electacta.2015.10.097

    Article  Google Scholar 

  57. J.C. Barbosa, R. Gonçalves, C.M. Costa, S. Lanceros-Mendez, Recent advances on materials for lithium-ion batteries. Energies 14(11), 3145 (2021). https://doi.org/10.3390/en14113145

    Article  Google Scholar 

  58. C. Zhang, J. Xu, L. Cao, Z. Wu, S. Santhanagopalan, Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries. J. Power Sour. 357, 126–137 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.103

    Article  ADS  Google Scholar 

  59. K. Liu, J. Wu, Mechanical properties of two-dimensional materials and heterostructures. J. Mater. Res. 31(7), 832–844 (2016). https://doi.org/10.1557/jmr.2015.324

    Article  ADS  Google Scholar 

  60. O.L. Blakslee, D.G. Proctor, E.J. Seldin, G.B. Spence, T. Weng, Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41(8), 3373–3382 (1970). https://doi.org/10.1063/1.1659428

    Article  ADS  Google Scholar 

  61. J.L. Tsai, J.F. Tu, Characterizing mechanical properties of graphite using molecular dynamics simulation. ICCM Int. Conf. Compos. Mater. 31(1), 194–199 (2009)

    Google Scholar 

  62. Y. Qi, H. Guo, L.G. Hector, A. Timmons, Threefold increase in the Young’s modulus of graphite negative electrode during lithium intercalation. J. Electrochem. Soc. 157(5), A558 (2010). https://doi.org/10.1149/1.3327913

    Article  Google Scholar 

  63. L.G.B. Manhani, L.C. Pardini, F.L. Neto, Assessement of tensile strength of graphites by the Iosipescu coupon test. Mater. Res. 10(3), 233–239 (2007). https://doi.org/10.1590/S1516-14392007000300003

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (2019YFC1907805).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roya Momen or **aobo Ji.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momen, R., Rezaee, R., Azizi, B. et al. Evaluation of mechanical properties of multilayer graphyne-based structures as anode materials for lithium-ions batteries. Eur. Phys. J. Plus 137, 360 (2022). https://doi.org/10.1140/epjp/s13360-022-02551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02551-8

Navigation