Log in

Nonlinear thermal radiation and heat source effects on unsteady electrical MHD motion of nanofluid past a stretching surface with binary chemical reaction

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An analysis is carried out for the free convection of two-dimensional time-dependent electrically conducting nanofluid past a linearly permeable expanding surface. Additionally, the impact of external heat source, nonlinear thermal radiation, and the dissipative heat energy associated with Joule heating is considered in the current flow phenomena. As a novelty, the behavior of binary chemical reactions enhances the study as well. The relevant governing equations are transformed to ODEs with the suitable choice of similarity transformations and these set of equations are handled by the shooting-based Runge–Kutta fourth-order method. From this analysis, it has been established that the effect of suction and magnetic field slows down the movement of the fluids, but due to the higher electric field strength, it enhances the outcome of the strength of the magnetic field and the electric field tends to increases the viscosity. Furthermore, it has been determined that the increase in radiative heat and heat source leads to the development of nanofluid temperature, and the Nusselt number enhances with the enhancement of the thermal radiation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(B_{0} ,B\) :

Magnetic and applied magnetic field

\(C_{0} ,C\) :

Reference and fluid concentration

\(C_{{\text{f}}}\) :

Coefficient of skin friction

\(C_{\infty }\) :

Concentration of ambient fluid

\(D_{{\text{B}}} ,D_{{\text{T}}}\) :

Brownian and thermophoresis diffusion

\(E\) :

Parameter of activation energy

Ea:

Activation energy

Ec::

Eckert number

\(E_{0} ,E_{1}\) :

Electric field factor and parameter

\(E^{ * }\) :

Applied electric field

f′:

Non-dimensional velocity

Gr:

Grashof number

\(K\) :

Chemical reaction parameter

\(k_{0} ,k\) :

Constant and thermal conductivity

\(k_{{\text{r}}}\) :

Variable reaction rate

k f :

Base fluid and nanoparticle thermal conductivity

\(k^{ * }\) :

Mean radiation absorption coefficient

\(M\) :

Parameter of magnetic field

\(N\) :

Buoyancy ratio parameter

\({\text{Nb}},{\text{Nt}}\) :

Brownian flow and thermophoresis parameter

\({\text{Nu}}_{x} ,\Pr\) :

Local Nusselt and Prandtl number

\(Q\) :

Heat source parameter

\(Q^{ * }\) :

Coefficient of heat generation

\(q_{{\text{m}}} ,q_{{\text{r}}} ,q_{{\text{w}}}\) :

Flux of wall mass, radiative heat wall heat

R d :

Parameter of radiation

\({\text{Re}}_{x}\) :

Reynolds number

Sc:

Schmidt number

\(s\) :

Suction parameter

Shx :

Sherwood number

\(T,\,T_{0}\) :

Fluid and reference temperature

\(T_{{\text{w}}} ,T_{\infty }\) :

Wall surface and ambient temperature

\(u,\,v\) :

x and y directionfluid velocity

u w(x):

Extending velocity

\(v_{{\text{w}}}\) :

Transfer of wall concentration

\(\alpha\) :

Thermal diffusivity

\(\sigma^{ * }\) :

Constant of Stefan–Boltzmann

\(\sigma\) :

Electrical conductivity

\(\delta\) :

Instability parameter

\(\delta_{1}\) :

Temperature difference parameter

\(\eta\) :

Non-dimensional similarity variable

\(\lambda\) :

Mixed convection parameter

\(\mu ,\nu\) :

Fluid dynamic and kinematic viscosity

\(\rho_{{\text{f}}} ,\rho_{{\text{p}}}\) :

Fluid and particle density

\((\rho c)_{{\text{f}}} ,(\rho c)_{{\text{p}}}\) :

Fluid and nanoparticle heat capacity

\(\psi\) :

Stream function

\(\theta\) :

Dimensionless temperature

\(\theta_{{\text{w}}}\) :

Temperature ratio parameter

\(\varphi\) :

Non-dimensional concentration

\(\tau\) :

Heat capacity ratio

\(\tau_{{\text{w}}}\) :

Shear stress of the sheet

\(\infty ,{\text{w}}\) :

Free stream and wall/surface condition

References

  1. M. Khan, A. Hamid, Results Phys. 7, 3968 (2017). https://doi.org/10.1016/j.rinp.2017.10.014

    Article  ADS  Google Scholar 

  2. D. Pal, H. Mondal, Commun. Nonlinear Sci. Numer. Simul. 15, 1197 (2010). https://doi.org/10.1016/j.cnsns.2009.05.051

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Dhlamini, P.K. Kameswaran, P. Sibanda, S. Motsa, H. Mondal, J. Comput. Des. Eng. 6(2), 149 (2019). https://doi.org/10.1016/j.jcde.2018.07.002

    Article  Google Scholar 

  4. K. Subbarayudu, S. Suneetha, P.B.A. Reddy, A.M. Rashad, Arab. J. Sci. Eng. 2, 04173 (2019). https://doi.org/10.1007/s13369-019-04173-2

    Article  Google Scholar 

  5. W.A. Khan, F. Sultan, M. Ali, M. Shahzad, M. Khan, M. Irfan, J. Braz. Soc. Mech. Sci. Eng. 41(4), 1 (2019). https://doi.org/10.1007/s40430-018-1482-0

    Article  Google Scholar 

  6. T. Hayat, A. Shafiq, A. Alsaedi, PLoS ONE 9(1), e83153 (2014). https://doi.org/10.1371/journal.pone.0083153

    Article  ADS  Google Scholar 

  7. K.L. Hsiao, Appl. Therm. Eng. 112, 1281 (2017). https://doi.org/10.1016/j.applthermaleng.2016.08.208

    Article  Google Scholar 

  8. B.S. Dandapat, A. Mukhopadhyay, Int. J. Appl. Mech. Eng. 8(3), 379 (2003)

    Google Scholar 

  9. A. Mukhopadhyay, B.S. Dandapat, J. Phys. D: Appl. Phys. 38, 138 (2005). https://doi.org/10.1088/0022-3727/38/1/022

    Article  ADS  Google Scholar 

  10. Alfvén H, On the cosmogony of the solar system. Stockh. Obs. Ann. 14, 2.1–2.33 (1942)

    MathSciNet  MATH  Google Scholar 

  11. S. Qayyum, M.I. Khan, T. Hayat, A. Alsaedi, Results Phys. 7, 1907 (2017). https://doi.org/10.1016/j.rinp.2017.05.020

    Article  ADS  Google Scholar 

  12. M. Awais, T. Hayat, N. Muqaddass, A.A. Aqsa, S.E. Awan, Results Phys. 8, 1038 (2018). https://doi.org/10.1016/j.rinp.2018.01.041

    Article  ADS  Google Scholar 

  13. A. Kumar, R. Tripathi, R. Singh, V.K. Chaurasiya, Physica A 551, 123972 (2020). https://doi.org/10.1016/j.physa.2019.123972

    Article  MathSciNet  Google Scholar 

  14. M.G. Reddy, M.V.V.N.L.S. Rani, O.D. Makinde, Diffus. Found. 11, 57 (2017). https://doi.org/10.4028/www.scientific.net/DF.11.57

    Article  Google Scholar 

  15. S.S. Ghadikolaei, Kh. Hosseinzadeh, D.D. Ganji, B. Jafari, Case Stud. Therm. Eng. 12, 176 (2018). https://doi.org/10.1016/j.csite.2018.04.009

    Article  Google Scholar 

  16. M. Irfan, M. Khan, W.A. Khan, L. Ahmad, Appl. Phys. A 125(179), 1 (2019). https://doi.org/10.1007/s00339-019-2457-4

    Article  Google Scholar 

  17. S.R.R. Reddy, P.B.A. Reddy, K. Bhattacharyya, Adv. Powder Technol. 30, 3203 (2019). https://doi.org/10.1016/j.apt.2019.09.029

    Article  Google Scholar 

  18. M.I. Khan, F. Alzahrani, Int. J. Mod. Phys. 34(13), 2050132 (2020). https://doi.org/10.1142/S0217979220501325

    Article  Google Scholar 

  19. G. Rasool, A. Shafiq, D. Baleanu, Symmetry 12(9), 1421 (2020). https://doi.org/10.3390/sym12091421

    Article  Google Scholar 

  20. I. Tlili, S. Naseer, M. Ramzan, S. Kadry, Y. Nam, Entropy 22(4), 453 (2020). https://doi.org/10.3390/e22040453

    Article  Google Scholar 

  21. M. Rashid, A. Alsaedi, T. Hayat, B. Ahmed, Appl. Nanosci. 10, 2951 (2019). https://doi.org/10.1007/s13204-019-01143-w

    Article  Google Scholar 

  22. M. Waqas, S. Naz, T. Hayat, A. Alsaedi, Appl. Nanosci. 9(5), 1173 (2019). https://doi.org/10.1007/s13204-018-00940-z

    Article  ADS  Google Scholar 

  23. F.A. Soomro, M. Usman, R. UlHaq, W. Wang, Int. J. Heat Mass Transf. 126, 1034 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.099

    Article  Google Scholar 

  24. B.J. Gireesha, B. Mahanthesh, R.S.R. Gorla, K.L. Krupalakshmi, Ain Shams Eng. J. 9, 735 (2018). https://doi.org/10.1016/j.asej.2016.04.020

    Article  Google Scholar 

  25. B. Souayeh, M.G. Reddy, P. Sreenivasulu, T. Poornima, M.R. Gorji, I.M. Alarifi, J. Mol. Liq. 284, 163 (2019). https://doi.org/10.1016/j.molliq.2019.03.151

    Article  Google Scholar 

  26. M.M. Bhatti, S.R. Mishra, T. Abbas, M.M. Rashidi, Neural Comput. Appl. 30(4), 1237 (2016). https://doi.org/10.1007/s00521-016-2768-8

    Article  Google Scholar 

  27. A.M. Rashad, M.M. Rashidi, G. Lorenzini, S.E. Ahmed, A.M. Aly, Int. J. Heat Mass Transf. 104, 878 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.025

    Article  Google Scholar 

  28. M.M. Bhatti, M.A. Abbas, M.M. Rashidi, Appl. Math. Comput. 316, 381 (2018). https://doi.org/10.1016/j.amc.2017.08.032

    Article  MathSciNet  Google Scholar 

  29. M.M. Rashidi, S. Bagheri, E. Momoniat, N. Freidoonimehr, Ain Shams Eng. J. 8(1), 77 (2017). https://doi.org/10.1016/j.asej.2015.08.012

    Article  Google Scholar 

  30. W. Ibrahim, B. Shankar, Comput. Fluids 75, 1 (2013). https://doi.org/10.1016/j.compfluid.2013.01.014

    Article  MathSciNet  Google Scholar 

  31. Y.S. Daniel, Z.A. Aziz, Z. Ismail, F. Salah, J. King Saud Univ. Sci. 31, 804 (2019). https://doi.org/10.1016/j.jksus.2017.10.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. P. Sharma or I. Rashidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.P., Prakash, O., Rashidi, I. et al. Nonlinear thermal radiation and heat source effects on unsteady electrical MHD motion of nanofluid past a stretching surface with binary chemical reaction. Eur. Phys. J. Plus 137, 297 (2022). https://doi.org/10.1140/epjp/s13360-022-02359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02359-6

Navigation