Log in

GUP-modified Hawking radiation and transmission/reflection coefficients of rotating polytropic black hole

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we study the GUP (generalized uncertainty principle)-modified Hawking radiation of rotating polytropic black hole given in the Boyer–Lindquist coordinates. To this end, the GUP-modified Klein–Gordon equation is applied for investigating the quantum tunneling of scalar particles from the polytropic black hole. After reducing the obtained radial wave equation to the one-dimensional Schrödinger equation, we derive the reflection and transmission probabilities of the radiation. A detail discussion on how the reflection and transmission (greybody factor) probabilities are derived for this black hole is given. The results are graphically depicted, and the relevant physical interpretations are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Cao, J. Zhang, Astron. Astrophyd. 285, 1047–1051 (1994)

    ADS  Google Scholar 

  2. T. Nakamura, K. Oohara, Teor. Phys. 82, 1066 (1989)

    Article  ADS  Google Scholar 

  3. L. Herrera, W. Barreto, Gen. Relativ. Gravit. 36, 127 (2004)

    Article  ADS  Google Scholar 

  4. E. Contreras, Á. Rincón, B. Koch, P. Bargueño, Eur. Phys. J. C 78, 246 (2018)

    Article  ADS  Google Scholar 

  5. E. Contreras, P. Bargueño, Eur. Phys. J. C 78, 985 (2018)

    Article  ADS  Google Scholar 

  6. M.R. Setare, H. Adami, Gen. Relativ. Gravit. 47, 133 (2015)

    Article  ADS  Google Scholar 

  7. U. Mukhopadhyay, S. Ray, Mod. Phys. Lett. A 23, 3187 (2008)

    Article  ADS  Google Scholar 

  8. M.R. Setare, H. Adami, Phys. Rev. D 91, 084014 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. R.N. Tiwari, J.R. Rao, R.R. Kanakamedala, Phys. Rev. D 34, 1205 (1986)

    Article  ADS  Google Scholar 

  10. S. Ray, Astrophys. Space Sci. 280, 345 (2002)

    Article  ADS  Google Scholar 

  11. S.W. Hawking, Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  12. S.W. Hawking, Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  Google Scholar 

  13. P. Wang, H. Yang, S. Ying, Int. J. Theor. Phys. 55, 2633 (2016)

    Article  Google Scholar 

  14. P. Kraus, F. Wilczek, Nucl. Phys. B 437, 231 (1995)

    Article  ADS  Google Scholar 

  15. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Kerner, R.B. Mann, Class. Quant. Grav. 25, 095014 (2008)

    Article  ADS  Google Scholar 

  17. K. Konishi, G. Paffuti, P. Provero, Phys. Lett. B 234, 276 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. L.J. Garay, Int. J. Mod. Phys. A 10, 145 (1995)

    Article  ADS  Google Scholar 

  19. D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 216, 41 (1989)

    Article  ADS  Google Scholar 

  20. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Das, E.C. Vagenas, Phys. Rev. Lett. 101, 221301 (2008). [ar**v:0810.5333 [hep-th]]

  22. T. Morita, Phys. Lett. B 677, 88 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. L. **amg, Phys. Lett. B 647, 200 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Q.Q. Jiang, S.Q. Wu, X. Cai, Phys. Rev. D 75, 064029 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.Q. Liu, S.Z. Yang, Int. J. Mod. Phys. 46, 65 (2007)

    Google Scholar 

  26. W.H. Huang, Class. Quantum Gravity 9, 1199 (1992)

    Article  ADS  Google Scholar 

  27. M. Dehghani, Phys. Lett. B 749, 125 (2015)

    Article  ADS  Google Scholar 

  28. G. Ganim, S. Yusuf, Phys. Lett. B 773, 391–394 (2017)

    Article  ADS  Google Scholar 

  29. P. Wang, H. Yang, S. Ying, Int. J. Theor. Phys. 55, 2633–2642 (2016)

    Article  Google Scholar 

  30. B. Mu, P. Wang, H. Yang, Adv. High Energy Phys. 2015, 898916 (2015)

    Article  Google Scholar 

  31. A. Ovgun, K. Jusufi, Eur. Phys. J. Plus 132, 298 (2017)

    Article  Google Scholar 

  32. S. Kanzi, I. Sakalli, Nucl. Phys. B 946, 114703 (1995)

    Article  Google Scholar 

  33. L. **ang, X.Q. Wen, J. High Energy Phys. 9462009, 10 (2009)

    Google Scholar 

  34. L. **ang-Qian, C. Ge-Rui, Phys. Lett. B 751, 34–38 (2015)

    Article  ADS  Google Scholar 

  35. L. Vanzo, G. Acquaviva, R. Di Criscienzo, Class. Quant. Grav. 28, 183001 (2011)

    Article  ADS  Google Scholar 

  36. N. Bjerrum-Bohr, J. Donoghue, B. Holstein, Phys. Rev. D 71, 069904 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  37. D.N. Page, Phys. Rev. D 13, 198 (1976)

    Article  ADS  Google Scholar 

  38. D.N. Page, Phys. Rev. D 14, 3260 (1976)

    Article  ADS  Google Scholar 

  39. M. Sharif, Q. Ama-Tul-Mughani, Prog. Theor. Exp. Phys. 2020, 033 (2020)

    Article  Google Scholar 

  40. S.S. Gubserv, I.R. Klebanov, Phys. Rev. Lett. 77, 4491 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Barman, Eur. Phys. J. C 80, 50 (2020)

    Article  ADS  Google Scholar 

  42. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000). ar**v:hep-th/9907001

  43. K.D. Kokkotas, R.A. Konoplya, A. Zhidenko, Phys. Rev. D 83, 024031 (2011)

    Article  ADS  Google Scholar 

  44. B. Toshmatov, A. Abdujabbarov, Z. Stuchlík, B. Ahmedov, Phys. Rev. D 91, 083008 (2015)

    Article  ADS  Google Scholar 

  45. P. Boonserm, M. Visser, Ann. Phys. 323, 2779 (2008). ar**v:0801.0610 [quant-ph]

  46. P. Boonserm, Rigorous Bounds on Transmission, Reflection, and Bogoliubov Coefficients (PhD Thesis, Victoria University of Wellington, 2009). [ar**v: 0907.0045]

  47. S. Fernando, Gen. Rel. Gravit. 37, 461 (2005)

    Article  ADS  Google Scholar 

  48. W. Kim, J.J. Oh, JKPS 52, 986 (2008)

    Article  ADS  Google Scholar 

  49. S. Kanzi, S.H. Mazharimousavi, I. Sakalli, Ann. Phys. 422, 168301 (2020)

    Article  Google Scholar 

  50. A. Al-Badawi, I. Sakalli, S. Kanzi, Ann. Phys. 412, 168026 (2020)

    Article  Google Scholar 

  51. A. Al-Badawi, S. Kanzi, I. Sakalli, Eur. Phys. J. Plus 135, 1 (2020)

    Article  Google Scholar 

  52. E. Contreras, J.M. Ramirez-Velasquez, Á. Rincón, G. Panotopoulos, P. Bargueño, Eur. Phys. J. C 79, 802 (2019). ar**v:1905.11443 [gr-qc]

  53. Z. ZeMa, Phys. Lett. B 666, 376 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  54. J. Lense, H. Thirring, Physikalische Zeitschrift 19, 156 (1918)

    ADS  Google Scholar 

  55. J.M. Bardeen, W.H. Press, S.A. Teukolsky, Astrophys. J. 178, 347 (1972)

    Article  ADS  Google Scholar 

  56. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973)

    Google Scholar 

  57. A.K. Singh, I.A. Meitei, T.I. Singh, K.Y. Singh, Eur. Phys. J. C 79, 692 (2019)

    Article  ADS  Google Scholar 

  58. G. Gecim, Y. Sucu, Phys. Lett. B 773, 391 (2014)

    Article  ADS  Google Scholar 

  59. Y.K. Meitei, T.I. Singh, I.A. Meitei, Turk. J. Phys. 44, 373 (2020)

    Article  Google Scholar 

  60. A. Paliathanasis, S. Pan, S. Pramanik, Class. Quantum Grav. 32, 245006 (2015)

    Article  ADS  Google Scholar 

  61. S. Chandrasekhar, The mathematical theory of black holes (Oxford University Press, Oxford, UK, 1983)

    MATH  Google Scholar 

  62. J.V. Rocha, J. High Energy Phys. 19, 027 (2009)

    Article  Google Scholar 

  63. A. Rincon, V. Santos, Eur. Phys. J. C 80, 910 (2020)

    Article  ADS  Google Scholar 

  64. S.H. Völkel, R. Konoplya, K.D. Kokkotas, Phys. Rev. D 99, 104025 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  65. R.F. Voss, R.A. Webb, Phys. Rev. Letts. 47, 265 (1981)

    Article  ADS  Google Scholar 

  66. M.H. Ali, K. Sultan, Int. J. Theor. Phys. 52, 4537 (2013)

    Article  Google Scholar 

  67. R.A. Konoplya, A.F. Zinhailo, Phys. Lett. B 810, 135793 (2020)

    Article  MathSciNet  Google Scholar 

  68. R.A. Konoplya, Phys. Rev. D 68, 024018 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  69. R. Takahashi, Mon. Not. R. Astron. Soc. 382, 567593 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor and anonymous referee for their valuable comments and suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Kanzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanzi, S., Sakallı, İ. GUP-modified Hawking radiation and transmission/reflection coefficients of rotating polytropic black hole. Eur. Phys. J. Plus 137, 14 (2022). https://doi.org/10.1140/epjp/s13360-021-02245-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02245-7

Navigation