Log in

A numerical scheme based on the collocation and optimization methods for accurate solution of sensitive boundary value problems

  • Technical Report
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Despite the significant advances in the numerical solution of nonlinear boundary value problems, most of the existing methods still encounter with a high sensitivity to the initial guess. The aim of this paper is to propose a less sensitive robust numerical scheme for accurate solution of sensitive boundary value problems. For this purpose, an orthogonal collocation approach for discretization of the problem is utilized. Thereby, the problem is converted to the solution of nonlinear algebraic equations. However, due to the difficulties of solving the obtained system of nonlinear equations, particularly in providing the proper initial guess, the obtained system of equations is transferred to an optimization problem in which the values of the solution at collocation points are considered as decision parameters. The method finds good results even using not good initial guess for decision parameters and even using a small number of discretization points. Numerical results of five benchmark examples are presented and the efficiency of the method is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. K. Atkinson, W. Han, D. Stewart, Numerical solution of ordinary differential equations. (A Wiley Series of Texts, Monographs and Tracts. Wiley, Pure and Applied Mathematics, 2009)

  2. J. Boyd, Chebyshev and fourier spectral methods: second, Revised. (Dover Books on Mathematics, Dover Publications, 2001)

  3. H. Keller, Numerical solution of two point boundary value problems. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA (1976)

  4. C. Kelley, Solving nonlinear equations with Newton’s Method. (Society for Industrial and Applied Mathematics, Fundamentals of Algorithms, 2003)

  5. L. Shampine, I. Gladwell, S. Thompson, Solving ODEs with MATLAB (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  6. C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral Methods in Fluid Dynamics (Springer, Berlin, 1991)

    MATH  Google Scholar 

  7. B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  8. L.N. Trefethen, Spectral Methods in MATLAB (SIAM, Philadelphia, 2000)

    Book  Google Scholar 

  9. W. Gautschi, Orthogonal Polynomials: Computation and Approximation (Oxford University Press, Oxford, 2004)

    Book  Google Scholar 

  10. R. D‘Ambrosio, M. Ferro, Z. Jackiewicz, B. Paternoster, Two-step almost collocation methods for ordinary differential equations. Numer. Algorithms 53(2), 195–217 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. R. D‘Ambrosio, B. Paternoster, Two-step modified collocation methods with structured coefficient matrices. Appl. Numer. Math 62, 1325–1334 (2012)

    Article  MathSciNet  Google Scholar 

  12. R. D‘Ambrosio, B. Paternoster, Multivalue collocation methods free from order reduction. J. Comput. Appl. Math. 387, 112–515 (2021)

    Article  MathSciNet  Google Scholar 

  13. F. Fakhar-Izadi, M. Dehghan, Fully spectral collocation method for nonlinear parabolic partial integro-differential equations. Appl. Numer. Math. 123, 99–120 (2018)

    Article  MathSciNet  Google Scholar 

  14. S.Z. Fatemi, M. Shamsi, N. Razmjooy, Collocation method for differential variational inequality problems. Int. J. Numer. Modell. Electron. Netw. Dev. Fields 32(1), E2466 (2019)

    Article  Google Scholar 

  15. H. Heidary, M. Mehrpouya, A. Ghalee, A. Oskouei, A design for a yoke to detect a notch on edge by using magnetic flux leakage method. Eur. Phys. J. Plus 136(4), 1–20 (2021)

    Article  Google Scholar 

  16. M.K.E. Oshagh, M. Shamsi, An adaptive wavelet collocation method for solving optimal control of elliptic variational inequalities of the obstacle type. Comput. Math. Appl. 75(2), 470–485 (2018)

    Article  MathSciNet  Google Scholar 

  17. M. Shahini, M. Mehrpouya, Transformed Legendre spectral method for solving infinite horizon optimal control problems. IMA J. Math. Control Inf. 35(2), 341–356 (2018)

    MathSciNet  MATH  Google Scholar 

  18. J. Dennis, R. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations. Classics Appl. Math. Soc. Ind. Appl. Math. (1996)

  19. J. Nocedal, S.J. Wright, Numerical Optimization, 2nd edn. (Springer, New York, 2006)

    MATH  Google Scholar 

  20. M.R. Osborne, On shooting methods for boundary value problems. J. Math. Anal. Appl. 27(2), 417–433 (1969)

    Article  MathSciNet  Google Scholar 

  21. M. Kubicek, V. Hlavacek, Numerical solution of nonlinear boundary value problems with applications. Courier Corporation (2008)

  22. S. Tomar, R. Pandey, An efficient iterative method for solving Bratu-type equations. J. Comput. Appl. Math. 357, 71–84 (2019)

    Article  MathSciNet  Google Scholar 

  23. E. Deeba, S. Khuri, S. **e, An algorithm for solving boundary value problems. J. Comput. Phys. 159(2), 125–138 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. S.A. Khuri, A new approach to Bratu‘s problem. Appl. Math. Comput. 147(1), 131–136 (2004)

    MathSciNet  MATH  Google Scholar 

  25. A.M. Wazwaz, Adomian decomposition method for a reliable treatment of the Bratu-type equations. Appl. Math. Comput. 166(3), 652–663 (2005)

    MathSciNet  MATH  Google Scholar 

  26. H. Caglar, N. Caglar, M. Özer, A. Valarıstos, A.N. Anagnostopoulos, B-spline method for solving Bratu‘s problem. Int. J. Comput. Math. 87(8), 1885–1891 (2010)

    Article  MathSciNet  Google Scholar 

  27. M.A.Z. Raja, Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connection Sci. 26(3), 195–214 (2014)

    Article  ADS  Google Scholar 

  28. D. Conte, R. D‘Ambrosio, M. Moccaldi, B. Paternoster, Adapted explicit two-step peer methods. J. Numer. Math. 27(2), 69–83 (2019)

    Article  MathSciNet  Google Scholar 

  29. R. D‘Ambrosio, G. De Martino, B. Paternoster, Numerical integration of Hamiltonian problems by G-symplectic methods. Adv. Comput. Math. 40(2), 553–575 (2014)

    MathSciNet  MATH  Google Scholar 

  30. D. Kirk, Optimal Control Theory (Prentice-Hall, Englewood Cliffs, NJ, 1970)

    Google Scholar 

  31. J.M. Sanz-Serna, M.P. Calvo, Numerical Hamiltonian problems. Courier Dover Publications (2018)

  32. H. Peng, Q. Gao, Z. Wu, W. Zhong, Symplectic approaches for solving two-point boundary-value problems. J. Guid. Control Dyn. 35(2), 653–659 (2012)

    Article  ADS  Google Scholar 

  33. C.Y. Kaya, J.L. Noakes, Leapfrog for optimal control. SIAM J. Numer. Anal. 46(6), 2795–2817 (2008)

    Article  MathSciNet  Google Scholar 

  34. P. Aursand, G. Napoli, J. Ridder, On the dynamics of the weak Fréedericksz transition for nematic liquid crystals. Commun. Comput. Phys. 20(5), 1359–1380 (2016)

    Article  MathSciNet  Google Scholar 

  35. G. Bevilacqua, G. Napoli, Parity of the weak Fréedericksz transition. Eur. Phys. J. E 35(133), 1–5 (2012)

    Google Scholar 

  36. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (Dover Publications, Mineola, 1946)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mehrpouya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrpouya, M.A., Salehi, R. A numerical scheme based on the collocation and optimization methods for accurate solution of sensitive boundary value problems. Eur. Phys. J. Plus 136, 909 (2021). https://doi.org/10.1140/epjp/s13360-021-01915-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01915-w

Navigation