Log in

Heat transfer enhancement through a rectangular channel by DBD plasma actuators as vortex generators

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper represents a three-dimensional numerical simulation to figure out the application of the DBD plasma actuators as an active vortex generator system to enhance heat transfer through a smooth rectangular channel. This system as an active flow control device consists of a pair of DBD plasma actuators, which have been implemented asymmetrically on the bottom wall by several angles of attack to induce the cross airflow. The investigation deals with the optimum angle of attack according to different Reynolds number (Re) ranging from 2300 to 3800 and alternating current voltages of 31–37 kV. The heat transfer rate, pressure drop, and overall performance have been assessed. The results show the optimum choice for the angles of attack was 30° among various flow conditions. By this design, at the voltage of 37 kV and Re of 2300, the average Nusselt number (Num) increased about 56% and heat transfer performance factor (\(\eta\)) increased about 111%. Furthermore, at the lowest applied voltage (31 kV) and highest Reynolds number (3800), the value of Num rises to 41% and 59%, respectively. Thereupon, as the next optimum choices, angle of attack of 45° at high Re and angle of attack of 15°at low Re enhanced heat transfer performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(D_{h}\) :

Hydraulic diameter

f :

Friction factor

\(F_{{e_{i} }}\) :

Electric force

\(F_{b}\) :

Body force

\(h_{m}\) :

Average heat transfer coefficient

\(h_{z}\) :

Local heat transfer coefficient

\(H\) :

Height of the channel

\(L\) :

Length of the channel

\(Nu_{m}\) :

Average Nusselt number

\(p\) :

Pressure

\(\Delta p\) :

Pressure drop

\(q^{\prime \prime}\) :

Heat flux

\({\text{Re}}\) :

Reynolds number

\(T\) :

Temperature

\(T_{w,z}\) :

Local wall temperature

\(T_{a,z}\) :

Local fluid flow temperature

\(T_{w,m}\) :

Wall mean temperature

\(T_{a,m}\) :

Fluid flow mean temperature

\(T_{{a,{\text{in}}}}\) :

Average inlet temperature

\(T_{{a,{\text{out}}}}\) :

Average outlet temperature

\(u\) :

Velocity component

\(U\) :

Fluid flow inlet velocity in the z-direction

\(V\) :

Applied voltage

\(W\) :

Width of the channel

\(x\) :

Cartesian coordinate

\(\Delta x\) :

Length of the plasma region

\(y\) :

Cartesian coordinate

\(z\) :

Cartesian coordinate

\(\alpha\) :

Thermal diffusivity

\(\alpha_{t}\) :

Thermal eddy diffusivity

\(\delta_{{{\text{ij}}}}\) :

Kronecker delta

\(\theta\) :

Angel of attack

\(\lambda\) :

Thermal conductivity coefficient

\(\mu\) :

Dynamic viscosity

\(\mu_{t}\) :

Turbulence dynamic viscosity

\(\rho\) :

Fluid density

\(\alpha\) :

Thermal diffusivity

\(\alpha_{t}\) :

Thermal eddy diffusivity

\(i,j\) :

Index notations

\({\text{on}}\) :

Presence of the actuation

\({\text{off}}\) :

Absence of the actuation

\(x\) :

Local value in the \(x\) direction

\(y\) :

Local value in the \(y\) direction

\(z\) :

Local value in the \(z\) direction

References

  1. E. Konstantinidis, Actuators 8, 66 (2019)

    Article  Google Scholar 

  2. G. Palani, I.A. Abbas, Nonlinear Anal.: Model. Control. 14, 73 (2009)

    Article  Google Scholar 

  3. K. Kudo, T. Kato, H. Chida, S. Takagi, N. Tsui, Int. J. Energy Res. 27, 327 (2003)

    Article  Google Scholar 

  4. M. Miyamoto, J. Sumikawa, T. Akityoshi, T. Nakamura, Int. J. Heat Mass Transf. 23, 1545 (1980)

    Article  ADS  Google Scholar 

  5. A.N.M.M.I. Mukut, H. Mizunuma, H. Obara, Procedia Eng. 90, 232 (2014)

    Article  Google Scholar 

  6. C. L. Enloe, T. E. McLaughlin, R. D. VanDyken, J. C. Fischer, in 42nd AIAA Aerospace Sciences Meeting and Exhibit. (2004)

  7. D. M. Orlov, T. C. Corke, in 43rd AIAA Aerospace Sciences Meeting and Exhibit. (2005)

  8. D. M. Orlov, PhD, University of Notre Dame. (2006)

  9. M.L. Post, T.C. Corke, Am. Inst. Aeronaut. Astronaut. J. 42, 2177 (2004)

    Article  Google Scholar 

  10. P.F. Zhang, B. Yan, A.B. Liu, J.J. Wang, Am. Inst. Aeronaut. Astronaut. J. 48, 2213 (2010)

    Article  Google Scholar 

  11. Ryan McGowan, Thomas C. Corke, Eric Matlis, in 54th AIAA Aerospace Sciences Meeting. 2016

  12. M. Abdollahzadeh, F. Rodrigues, J.C. Pascoa, Sens. Actuators, A 315, 112361 (2020)

    Article  Google Scholar 

  13. J. Cai, Y. Tian, X. Meng, X. Han, D. Zhang, H. Hu, Exp Fluids 58, 102 (2017). https://doi.org/10.1007/s00348-017-2378-y

    Article  Google Scholar 

  14. Y. **ao, S. Dai, L. He, T. **, Q. Zhang, Heat Mass Transf. 52, 1571 (2016)

    Article  ADS  Google Scholar 

  15. H. Moayedi, N. Amanifard, J. Electrost. 108, 103520 (2020)

    Article  Google Scholar 

  16. J.M. Wu, W.Q. Tao, Int. J. Heat Mass Transf. 51, 1179 (2008)

    Article  Google Scholar 

  17. A. Esmaeilzadeh, N. Amanifard, H.M. Deylami, Appl. Therm. Eng. 125, 1414 (2017)

    Article  Google Scholar 

  18. A. Abdollahi, M. Shams, Appl. Therm. Eng. 81, 376 (2015)

    Article  Google Scholar 

  19. Syaiful, Imam Syarifudin, Maria F. Soetanto, Myung-whan Bae, MATEC Web of Conferences. 159 (2018)

  20. J. Li, C. Dang, E. Hihara, Int. J. Heat Mass Transf. 128, 66 (2019)

    Article  Google Scholar 

  21. T.N. Jukes, K. Choi, Exp. Fluids 52, 329 (2012)

    Article  Google Scholar 

  22. T.N. Jukes, T. Segawa, H. Furutani, Am. Inst. Aeronaut. Astronaut. J. 51, 452 (2013)

    Article  Google Scholar 

  23. A. Ghayour, M. Mani, Aircr. Eng. Aerosp. Technol. 92, 376–385 (2018)

    Article  Google Scholar 

  24. J.A. Vernet, R. Örlü, D. Soderblom, P. Elofsson, P.H. Alfredsson, Flow Turbul. Combus. 100, 1101 (2018)

    Article  Google Scholar 

  25. H.Y. Kim, H.H. Kim, J.S. Han, J.H. Han, Proc. SPIE. 10164, 101642V (2017)

    Article  Google Scholar 

  26. M. Arthur, T. Samper, T. C. Corke, D. Frias, D. Hanson, N. Nolcheff, in 54th AIAA Aerospace Sciences Meeting. 2016

  27. R. Serakawi, K.A. Ahmad, J. Aircr. 49, 76 (2012)

    Article  Google Scholar 

  28. J.A. Vernet, R. Örlü, P.H. Alfredsson, J. Fluid Mech. 835, 852 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. A.A. Sidorenko, A.D. Budovsky, P.A. Polivanov, O.I. Vishnyakov, V.G. Sudakov, V.N. Ishchenko, Thermophys. Aeromech. 26, 465 (2019)

    Article  ADS  Google Scholar 

  30. T. Zhang, Z.Q. Huang, X.B. Zhang, C.J. Liu, Numer. Heat Transf. 69, 1150 (2016)

    Article  Google Scholar 

  31. B. Delač, A. Trp, K. Lenić, Int. J. Heat Mass Transf. 78, 662 (2014)

    Article  Google Scholar 

  32. Zhou, Z. Feng, International Journal of Thermal Sciences. 78, 26 (2014)

  33. P.W. Deshmukh, R.P. Vedula, Int. J. Heat Mass Transf. 79, 551 (2014)

    Article  Google Scholar 

  34. J. Yu, L. He, Y. Zhu, W. Ding, Y. Wang, Heat Mass Transf. 49, 897 (2013)

    Article  ADS  Google Scholar 

  35. K. Ramakumar, J. D. Jacob, in 35th AIAA Fluid Dynamics Conference and Exhibit. 2005

  36. S. Mukherjee1, S. Roy, in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2012

  37. R. Roth, D.M. Sherman, S.P. Wilkinson, Am. Inst. Aeronaut. Astronaut. J. 38, 1166 (2000)

    Article  Google Scholar 

  38. W. Shyy, B. Jayaraman, A. Andersson, J. Appl. Phys. 92, 6434 (2002)

    Article  ADS  Google Scholar 

  39. C.L. Enloe, T.E. McLaughlin, R.D. VanDyken, K.D. Kachner, E.J. Jumper, T.C. Corke, Am. Inst. Aeronaut. Astronaut. J. 42, 589 (2004)

    Article  Google Scholar 

  40. Y. B. Suzen, P. G. Huang, J. D. Jacob and D. E. Ashpis, in 35th AIAA Fluid Dynamics Conference and Exhibit. 2005

  41. T. Saeed, I. Abbas, M. Marin, Symmetry 12, 488 (2020)

    Article  Google Scholar 

  42. A.M. Zenkour, I.A. Abbas, J. Vib. Control 20, 1907 (2013)

    Article  Google Scholar 

  43. J. Kriegseis, PhD, Technische Universität Darmstadt. (2011)

  44. F.O. Thomas, T.C. Corke, M. Iqbal, A. Kozlov, D. Schatzman, Am. Inst. Aeronaut. Astronaut. J. 47, 2169 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Amanifard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafroudi, S.S.M., Amanifard, N. & Deylami, H.M. Heat transfer enhancement through a rectangular channel by DBD plasma actuators as vortex generators. Eur. Phys. J. Plus 136, 492 (2021). https://doi.org/10.1140/epjp/s13360-021-01499-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01499-5

Navigation