Log in

Investigating the synergistic effect of CNT + MLG hybrid structure on copper matrix and electrical contact properties of the composite

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, carbon nanotubes (CNTs) and multi-layer graphene (MLG) were mixed and reinforced into copper matrix at the rates of 1, 2 and 10 vol.%. Thus, the synergistic effect of CNT \(+\) MLG hybrid structure on copper matrix was investigated and the usability of the obtained composite as an electrical contact material was examined. In addition, changes in the properties of the composite were demonstrated with the changes in amounts of CNTs and/or MLGs in Cu matrix. In this study, both reinforcements and composites were produced under laboratory conditions. The electrical conductivity, abrasion properties, and hardness of the produced composites and their usage as electrical contact material were investigated. The obtained results were compared with previous studies, and their reasons were revealed. The electrical conductivity of the obtained composite increased first to a certain reinforcement amount with the increasing CNT \(+\) MLG hybrid reinforcement rate and then decreased. However, the electrical conductivity of the composite reinforced with only CNTs or MLGs at the same rate was found to be higher than CNTs \(+\) MLGs reinforced composite. The abrasion resistance of CNT \(+\) MLG hybrid-reinforced copper matrix composite showed an increase with increasing reinforcement ratio. The increase in the amount of MLGs in the composite caused an increase in the abrasion resistance of the composite. This situation can be said to be caused by the lubricant property of MLGs. CNT \(+\) MLG hybrid-reinforced copper matrix composites were used as an electrical contact material in an experimental set-up, and this material loss in these materials and the damages on the surfaces after 20,000 turn on/off were investigated. It can be asserted that the electrical contact properties of the composite improved with increasing amount of MLGs. MLGs distributed rapidly the heat generating during the operation of the contact and weakened the mechanical effects during the on/off states of the contacts due to their lubricant properties which helped to reduce the damage on the contact materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    ADS  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991)

    ADS  Google Scholar 

  3. B.R. Stoner, B. Brown, J.T. Glass, Diam. Relat. Mater. 42, 49 (2014)

    ADS  Google Scholar 

  4. Y.P. Sun, K. Fu, Y. Lin, W. Huang, Acc. Chem. Res. 35, 1096 (2002)

    Google Scholar 

  5. D. Sudipta, K.P. Swapan, J. Mater. Chem. 20, 8207 (2010)

    Google Scholar 

  6. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132 (2010)

    Google Scholar 

  7. X. Chen, L. Zhang, S. Chen, Synth. Met. 210, 95 (2015)

    Google Scholar 

  8. M. Yi, Z. Shen, J. Mater. Chem. A 3, 11700 (2015)

    Google Scholar 

  9. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, C.H. Voon, Procedia Eng. 184, 469 (2017)

    Google Scholar 

  10. J. Robinson, X. Weng, K. Trumbull, R. Cavalero, M. Wetherington, E. Frantz, M. LaBella, Z. Hughes, M. Fanton, D. Snyder, ACS Nano 4, 153 (2010)

    Google Scholar 

  11. Ö. Güler, S.H. Güler, V. Selen, M.G. Albayrak, E. Evin, Fuller. Nanotubes Carbon Nanostruct. 24, 123 (2015)

    ADS  Google Scholar 

  12. K. Dasgupta, J.B. Joshi, S. Banerjee, Chem. Eng. J. 171, 841 (2011)

    Google Scholar 

  13. M. Keidar, A.M. Waas, Nanotechnology 15, 1571 (2004)

    ADS  Google Scholar 

  14. J. Chrzanowska, J. Hoffman, A. Małolepszy, M. Mazurkiewicz, T.A. Kowalewski, Z. Szymanski, L. Stobinski, Physica Status Solidi (a) 252, 1860 (2015)

    ADS  Google Scholar 

  15. S.Y. Yang, W.N. Lin, Y.L. Huang, H.W. Tien, J.Y. Wang, C.C.M. Ma, Carbon 49, 793 (2011)

    Google Scholar 

  16. J. Li, P.S. Wong, J.K. Kim, Mater. Sci. Eng. A 483, 660 (2008)

    Google Scholar 

  17. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, E.M. Itkis, C. Haddon, Adv. Mater. 20, 4740 (2008)

    Google Scholar 

  18. X. Liang, Q. Cheng, Compos. Commun. 10, 122 (2018)

    Google Scholar 

  19. X. Wu, F. Mu, H. Zhao, J. Mater. Sci. Technol. (2019). https://doi.org/10.1016/j.jmst.2019.05.063

    Article  Google Scholar 

  20. H. Li, L. Yang, G. Weng, W. **ng, J. Wu, G. Huang, J. Mater. Chem. A 3, 22385 (2015)

    Google Scholar 

  21. S. Gong, M. Wu, L. Jiang, Q. Cheng, Mater. Res. Express 3, 075002 (2016)

    ADS  Google Scholar 

  22. Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A.R. Raji, C. Kittrell, R.H. Hauge, J.M. Tour, Nat. Commun. 3, 1225 (2012)

    ADS  Google Scholar 

  23. Y.D.Y. Xue, J. Niu, Z. **a, A. Roy, H. Chen, J. Qu, Z.L. Wang, L.M. Dai, Sci. Adv. 1, e1400198 (2015)

    ADS  Google Scholar 

  24. P.H. Manrique, X. Lei, R. Xu, M. Zhou, I.A. Kinloch, R.J. Young, J. Mater. Sci. 54, 12236 (2019)

    ADS  Google Scholar 

  25. S.R. Bakshi, D. Lahiri, A. Agarwal, Int. Mater. Rev. 55, 41 (2010)

    Google Scholar 

  26. K. Chu, C. Jia, Appl. Mater. Sci. 211, 184 (2014)

    Google Scholar 

  27. K.T. Kim, S.I. Cha, S.H. Hong, Mater. Sci. Eng. 449, 46 (2007)

    Google Scholar 

  28. X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, B. Wang, Powder Technol. 301, 601 (2016)

    Google Scholar 

  29. Ö. Güler, Mater. Test. 56, 662 (2014)

    Google Scholar 

  30. R.M. Sundaram, A. Sekiguchi, M. Sekiya, T. Yamada, K. Hata, R. Soc. Open Sci. 5, 180814 (2018)

    ADS  Google Scholar 

  31. X. Chen, J. Tao, J. Yi, Y. Liu, C. Li, R. Bao, Mater. Sci. Eng. A 718, 427 (2018)

    Google Scholar 

  32. K. Zhou, Y. Shi, S. Jiang, L. Song, Y. Hua, Z. Gui, Mater. Res. Bull. 48, 2985 (2013)

    Google Scholar 

  33. O. Guler, E. Evin, S.H. Guler, Optoelectron. Adv. Mater.-Rapıd Commun. 7, 643 (2013)

    Google Scholar 

  34. Ö. Güler, S.H. Güler, Optik 127, 4630 (2016)

    ADS  Google Scholar 

  35. Ö. Güler, S.H. Güler, E. Güler, Fuller. Nanotubes Carbon Nanostruct. 25, 34 (2017)

    ADS  Google Scholar 

  36. Ö. Güler, S.H. Güler, M. Taşkın, Bull. Mater. Sci. 42, 1703 (2019)

    Google Scholar 

  37. C. Zhang, T.X. Liu, Chin. Sci. Bull. 57, 3010 (2012)

    Google Scholar 

  38. Y. Xue, Y. Ding, J. Niu, Z. **a, A. Roy, H. Chen, J. Qu, Z.L. Wang, L. Dai, Sci. Adv. 1, 1400198 (2015)

    ADS  Google Scholar 

  39. Y. Cheng, X. Shi, N.M. Pugno, H. Gao, Physica E 44, 955 (2012)

    ADS  Google Scholar 

  40. S. Cho, K. Kikuchi, T. Miyazaki, K. Takagi, A. Kawasaki, T. Tsukada, Scripta Mater. 63, 375 (2010)

    Google Scholar 

  41. P.G. Koppad, R.H.R. Aniruddha, C.S. Ramesh, K.T. Kashyap, R.G. Koppad, J. Alloy. Compd. 580, 527 (2013)

    Google Scholar 

  42. F. Chen, J. Ying, Y. Wang, S. Du, Z. Liu, Q. Huang, Carbon 96, 836 (2016)

    Google Scholar 

  43. L. **g-fu, Z. Lei, X. **-kun, Z. Ke-chao, Trans. Nonferrous Met. Soc. China 25, 3354 (2015)

    Google Scholar 

  44. M.R. Akbarpour, S. Alipour, M. Farvizi, Arch. Civ. Mech. Eng. 19, 694 (2019)

    Google Scholar 

  45. R.S. Ruoff, D. Qian, W.K. Liu, C.R. Phys. 4, 993 (2003)

    ADS  Google Scholar 

  46. C. Wu, D. Yi, W. Weng, S. Li, J. Zhou, F. Zheng, Mater. Des. 85, 511 (2015)

    Google Scholar 

  47. C. Wu, Q. Zhao, N. Li, H. Wang, D. Yi, W. Weng, J. Alloy. Compd. 766, 161 (2018)

    Google Scholar 

  48. G.J. Li, H.J. Cui, J. Chen, X.Q. Fang, W.J. Feng, J.X. Liu, J. Alloy. Compd. 696, 1228 (2017)

    Google Scholar 

  49. Z.J. Lin, S.H. Liu, X.D. Sun, M. **e, J.G. Li, X.D. Li, Y.T. Chen, J.L. Chen, D. Huo, M. Zhang, Q. Zhu, M. Liu, J. Alloy. Compd. 588, 30 (2014)

    Google Scholar 

  50. G.J. Li, X.Q. Fang, W.J. Feng, J.X. Liu, J. Alloy. Compd. 716, 106 (2017)

    Google Scholar 

  51. C. Vladan, C. Aleksandar, N. Talijan, Z. Dragana, M. Dragan, D. Minic, J. Alloy. Compd. 567, 33 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge for the financial support of Mersin University Department of Scientific Research Projects (Project No. 2019-1-TP2-3468).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Güler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güler, Ö., Katmer, H. Investigating the synergistic effect of CNT + MLG hybrid structure on copper matrix and electrical contact properties of the composite. Eur. Phys. J. Plus 135, 308 (2020). https://doi.org/10.1140/epjp/s13360-020-00315-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00315-w

Navigation