Log in

First-principles study of In mXn (X = Se, Te; m + n = 5 clusters: Structural, electronic, magnetic and spectral properties

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Using the density functional theory (DFT) method, the geometrical structures of \( {\rm In}_{m}X_{n}\) (\( X={\rm Se}\), Te; \( m+n=5\) clusters are optimized, and their relative stability as well as electronic, magnetic and spectral properties are calculated. The ground state structures of \( {\rm In}_{m}X_{n}\) clusters are found to be largely similar for \( X={\rm Se}\) and Te, with the exception of \( {\rm In}_{2}X_{3}\) . The energy gap exhibits the maximum for \( {\rm In}_{2}{\rm Se}_{3}\) or \( {\rm In}_{3}{\rm Te}_{2}\) . The electronic properties of \( {\rm In}_{m}X_{n}\) clusters depend on their geometrical structures and, hence, on the value of m ; and \( {\rm In}_{2}{\rm Se}_{3}\) shows a low vertical electron affinity (VEA) of about 1.60eV and a high vertical ionization potential (VIP) of about 9.33eV. The total magnetic moment is 1 or 0μ_B for the clusters with \( m={\rm odd}\) (1, 3) or even (2, 4) , respectively. The local magnetic moments of X atoms amount to about 99.9% of the total magnetic moment, while those of In atoms are merely 0.1%. The IR and Raman spectra of \( {\rm In}_{m}X_{n}\) clusters exhibit similarity for \( X={\rm Se}\) and Te with an exception of \( {\rm In}_{2}X_{3}\). The energies of the strongest peaks of \( {\rm In}_{m}{\rm Te}_{n}\) are largely smaller than the corresponding \( {\rm In}_{m}{\rm Se}_{n}\) in both IR and Raman spectra. For UV-Vis spectra, the absorption peaks at 200-400nm for all clusters and 390–780 nm for m = 1 and 3 (except \( {\rm In}_{3}{\rm Te}_{2}\) are likely to hint useful properties of UV and visible light absorption, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Hoffman, G. Mills, H. Yee et al., J. Phys. Chem. 96, 5546 (1992)

    Article  Google Scholar 

  2. S. Rasool, K. Saritha, K.T. Ramakrishna Reddy et al., Eur. Phys. J. Plus 132, 451 (2017)

    Article  Google Scholar 

  3. E. Cochran, Sci. Amer. 263, 74 (1990)

    Google Scholar 

  4. D.A. Bandurin, A.V. Tyurnina, G.L. Yu et al., Nat. Nanotechnol. 12, 223 (2017)

    Article  ADS  Google Scholar 

  5. K. Xu, L. Yin, Y. Huang et al., Nanoscale 8, 16802 (2016)

    Article  Google Scholar 

  6. L. Debbichi, O. Eriksson, S. Lebègue, J. Phys. Chem. Lett. 6, 3098 (2015)

    Article  Google Scholar 

  7. J.M. Maxtxain, J.E. Fowler, J.M. Ugalde, Phys. Rev. A 61, 532 (2000)

    Google Scholar 

  8. J.J. BelBruno, E. Sanville, A. Burnin et al., Chem. Phys. Lett. 478, 132 (2009)

    Article  ADS  Google Scholar 

  9. M. Sierka, J. Dbler, J. Sauer et al., Angew. Chem. Int. Ed. 46, 3372 (2007)

    Article  Google Scholar 

  10. J. Sun, W.C. Lu, H. Wang et al., Int. J. Quantum Chem. 107, 1915 (2007)

    Article  ADS  Google Scholar 

  11. A.B.C. Patzer, C. Chang, E. Sedlmayr et al., Eur. Phys. J. D 32, 329 (2005)

    Article  ADS  Google Scholar 

  12. D. van Heijnsbergen, K. Demyk, M.A. Duncan, G. Meijer et al., Phys. Chem. Chem. Phys. 5, 2515 (2003)

    Article  Google Scholar 

  13. J.X. Guo, S.Y. Wu, L. Peng et al., Physica B 524, 1 (2017)

    Article  ADS  Google Scholar 

  14. H. **, J.W. Li, Ying Dai et al., Phys. Chem. Chem. Phys. 19, 4855 (2017)

    Article  Google Scholar 

  15. E.M. Sosa-Hernande, J.M. Montejano-Carrizales, P.G. Alvarado-Leyva, Eur. Phys. J. D 71, 284 (2017)

    Article  ADS  Google Scholar 

  16. Z.C. Yu, X.R. Zhang, P.Y. Huo et al., Eur. Phys. J. Plus 132, 451 (2017)

    Article  Google Scholar 

  17. Madhulata Shukla, Indrajit Sinha, Int. J. Quantum. Chem. 118, 25490 (2018)

    Article  Google Scholar 

  18. K.S. Novoselov, D. Jiang, F. Schedin et al., PNAS 102, 10451 (2005)

    Article  ADS  Google Scholar 

  19. D. Die, B.X. Zheng, L.Q. Zhao et al., Sci. Rep. 6, 31978 (2016)

    Article  ADS  Google Scholar 

  20. C.G. Lia, J. Zhang, Y.Q. Yuan et al., Physica E 86, 303 (2017)

    Article  ADS  Google Scholar 

  21. Y.F. Li, X.Y. Kuang, S.J. Wang et al., Phys. Lett. A 375, 1877 (2011)

    Article  ADS  Google Scholar 

  22. S. Erkoc, S. Katirciogaelu, T. Yilmaz, J. Mol. Struct. Theochem. 542, 101 (2001)

    Article  Google Scholar 

  23. Ralph G. Pearson, J. Am. Chem. Soc. 107, 6801 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Ying Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, SY., Wu, SY., Zhang, F. et al. First-principles study of In mXn (X = Se, Te; m + n = 5 clusters: Structural, electronic, magnetic and spectral properties. Eur. Phys. J. Plus 133, 208 (2018). https://doi.org/10.1140/epjp/i2018-12036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12036-8

Navigation