Log in

Reconstructing Rayleigh–Bénard flows out of temperature-only measurements using Physics-Informed Neural Networks

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We investigate the capabilities of Physics-Informed Neural Networks (PINNs) to reconstruct turbulent Rayleigh–Bénard flows using only temperature information. We perform a quantitative analysis of the quality of the reconstructions at various amounts of low-passed-filtered information and turbulent intensities. We compare our results with those obtained via nudging, a classical equation-informed data assimilation technique. At low Rayleigh numbers, PINNs are able to reconstruct with high precision, comparable to the one achieved with nudging. At high Rayleigh numbers, PINNs outperform nudging and are able to achieve satisfactory reconstruction of the velocity fields only when data for temperature is provided with high spatial and temporal density. When data becomes sparse, the PINNs performance worsens, not only in a point-to-point error sense but also, and contrary to nudging, in a statistical sense, as can be seen in the probability density functions and energy spectra.

Graphical abstract

Visualizations of temperature (top) and vertical velocity (bottom) for the flow with \(\textrm{Ra}_2\). The left column shows the reference data, the other three columns show the reconstructions obtained with \(\ell /\delta = 1\), 14 and 31. The locations of the measuring probes (corresponding to the case with \(\ell =14\delta \)) are marked with white dots on top of \(T^r\). All visualizations share the same colorbar

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D.L. Hartmann, L.A. Moy, Q. Fu, Tropical convection and the energy balance at the top of the atmosphere. J. Clim. 14(24), 4495–4511 (2001)

    Article  ADS  Google Scholar 

  2. K. Suselj, M.J. Kurowski, J. Teixeira, A unified eddy-diffusivity/mass-flux approach for modeling atmospheric convection. J. Atmos. Sci. 76(8), 2505–2537 (2019)

    Article  ADS  Google Scholar 

  3. K. Våge, L. Papritz, L. Håvik, M.A. Spall, G.W.K. Moore, Ocean convection linked to the recent ice edge retreat along east Greenland. Nat. Commun. 9(1), 1–8 (2018)

    Article  Google Scholar 

  4. B.A. Storer, M. Buzzicotti, H. Khatri, S.M. Griffies, H. Aluie, Global energy spectrum of the general oceanic circulation. Nat. Commun. 13(1), 5314 (2022)

    Article  ADS  Google Scholar 

  5. M. Kronbichler, T. Heister, W. Bangerth, High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int. 191(1), 12–29 (2012)

    Article  ADS  Google Scholar 

  6. A. Brent, V.R. Voller, K. Reid, Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer. Heat Transf. Part A Appl. 13(3), 297–318 (1988)

    ADS  Google Scholar 

  7. G. Ahlers, S. Grossmann, D. Lohse, Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503–537 (2009)

    Article  ADS  Google Scholar 

  8. J. Charney, M. Halem, R. Jastrow, Use of incomplete historical data to infer the present state of the atmosphere. J. Atmos. Sci. 26, 1160–1163 (1969)

    Article  ADS  Google Scholar 

  9. M. Ghil, B. Shkoller, V. Yangarber, A balanced diagnostic system compatible with a barotropic prognostic model, in Monthly Weather Review, vol. 105, Oct (Publisher: American Meteorological Society Section: Monthly Weather Review, 1977), pp. 1223–1238

  10. M. Ghil, M. Halem, R. Atlas, Time-continuous assimilation of remote-sounding data and its effect an weather forecasting, in Monthly Weather Review, vol. 107 (Publisher: American Meteorological Society Section: Monthly Weather Review, 1979), pp. 140–171

  11. A. Farhat, E. Lunasin, E. Titi, On the Charney conjecture of data assimilation employing temperature measurements alone: the paradigm of 3d planetary geostrophic model. Math. Clim. Weather Forecast. 2, 08 (2016)

    MATH  Google Scholar 

  12. M.U. Altaf, E.S. Titi, T. Gebrael, O.M. Knio, L. Zhao, M.F. McCabe, I. Hoteit, Downscaling the 2D Bénard convection equations using continuous data assimilation. Comput. Geosci. 21, 393–410 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. M.A.E.R. Hammoud, E.S. Titi, I. Hoteit, O. Knio, CDAnet: a physics-informed deep neural network for downscaling fluid flows. J. Adv. Model. Earth Syst. 14(12), e2022MS003051 (2022). https://doi.org/10.1029/2022MS003051

    Article  ADS  Google Scholar 

  14. A. Farhat, N.E. Glatt-Holtz, V.R. Martinez, S.A. McQuarrie, J.P. Whitehead, Data assimilation in large Prandtl Rayleigh–Benard convection from thermal measurements. SIAM J. Appl. Dyn. Syst. 19(1), 510–540 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Agasthya, P.C. Di Leoni, L. Biferale, Reconstructing Rayleigh-Bénard flows out of temperature-only measurements using nudging. Phys. Fluids 34, 015128 (2022)

    Article  ADS  Google Scholar 

  16. E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  17. P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather prediction. Nature 525(7567), 47–55 (2015)

    Article  ADS  Google Scholar 

  18. M. Buzzicotti, F. Bonaccorso, Inferring turbulent environments via machine learning. Eur. Phys. J. E 45(12), 102 (2022)

    Article  Google Scholar 

  19. S. Lakshmivarahan, J.M. Lewis, Nudging methods: A critical overview, in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications vol. II (Springer, Berlin, 2013), pp. 27–57

  20. M. Buzzicotti, P. Clark Di Leoni, Synchronizing subgrid scale models of turbulence to data. Phys. Fluids 32(12), 125116 (2020)

    Article  ADS  Google Scholar 

  21. P.C. Di Leoni, A. Mazzino, L. Biferale, Synchronization to big data: nudging the Navier–Stokes equations for data assimilation of turbulent flows. Phys. Rev. X 10, 011023 (2020)

    Google Scholar 

  22. M. Buzzicotti, F. Bonaccorso, P.C. Di Leoni, L. Biferale, Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database. Phys. Rev. Fluids 6(5), 050503 (2021)

    Article  ADS  Google Scholar 

  23. M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. M. Raissi, A. Yazdani, G.E. Karniadakis, Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367, 1026–1030 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. K. Shukla, P. Clark Di Leoni, J. Blackshire, D. Sparkman, G.E. Karniadakis, Physics-Informed Neural Network for ultrasound nondestructive quantification of surface breaking cracks. J. Nondestr. Eval. 39, 61 (2020)

    Article  Google Scholar 

  26. S. Cai, Z. Wang, F. Fuest, Y.J. Jeon, C. Gray, G.E. Karniadakis, Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks. J. Fluid Mech. 915, 102 (2021)

  27. H. Wang, Y. Liu, S. Wang, Dense velocity reconstruction from particle image velocimetry/particle tracking velocimetry using a physics-informed neural network. Phys. Fluids 34, 017116 (2022)

    Article  ADS  Google Scholar 

  28. Y. Du, M. Wang, T.A. Zaki, State estimation in minimal turbulent channel flow: a comparative study of 4DVar and PINN. Int. J. Heat Fluid Flow (2022)

  29. P.C. Di Leoni, K. Agarwal, T. Zaki, C. Meneveau, J. Katz, Reconstructing velocity and pressure from sparse noisy particle tracks using Physics-Informed Neural Networks. ar**v:2210.04849 [physics] (2022)

  30. H. Eivazi, M. Tahani, P. Schlatter, R. Vinuesa, Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations. Phys. Fluids 34, 075117 (2022)

    Article  ADS  Google Scholar 

  31. S. Angriman, P. Cobelli, P. Mininni, M. Obligado, P.C. Di Leoni, Generation of turbulent states using Physics-Informed Neural Networks. ar**v:2209.04285 [physics] (2022)

  32. S. Cai, Z. Mao, Z. Wang, M. Yin, G.E. Karniadakis, Physics-Informed Neural Networks (PINNs) for fluid mechanics: a review. Acta Mech. Sin. 37, 1727–1738 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  33. S. Cuomo, V.S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, F. Piccialli, Scientific machine learning through physics-informed neural networks: where we are and what’s next. J. Sci. Comput. 92, 88 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. E.D. Siggia, High Rayleigh number convection. Annu. Rev. Fluid Mech. 26(1), 137–168 (1994). https://doi.org/10.1146/annurev.fl.26.010194.001033

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. H. Eivazi, R. Vinuesa, Physics-informed deep-learning applications to experimental fluid mechanics. ar**v:2203.15402 [physics] (2022)

  36. M. Tancik, P.P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J.T. Barron, R. Ng, Fourier features let networks learn high frequency functions in low dimensional domains. ar**v:2006.10739 [cs] (2020)

  37. A.D.J.G.E. Karniadakis, Extended Physics-Informed Neural Networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Commun. Comput. Phys. 28, 2002–2041 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This project has received partial funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement No. 882340))

Author information

Authors and Affiliations

Authors

Contributions

LA and PC conceived and carried out the numerical experiments and analyzed the results. All authors worked on develo** the main idea, discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Patricio Clark Di Leoni.

Additional information

T.I.: Quantitative AI in Complex Fluids and Complex Flows: Challenges and Benchmarks. Guest editors: Luca Biferale, Michele Buzzicotti, Massimo Cencini.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark Di Leoni, P., Agasthya, L., Buzzicotti, M. et al. Reconstructing Rayleigh–Bénard flows out of temperature-only measurements using Physics-Informed Neural Networks. Eur. Phys. J. E 46, 16 (2023). https://doi.org/10.1140/epje/s10189-023-00276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00276-9

Navigation